

COPYRIGHT

Copyright © 1993 by Commodore Electronics Limited. All rights Reserved. This document may not, in
whole or in part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Commodore Electronics Limited.

If this product is being acquired for on behalf of the United States of America, its agencies and/or
instrumentalities, it is provided with RESTRICTED RIGHTS, and all use, duplication, or disclosure with
respect to the included software and documentation is subject to the restrictions set forth in subdivision
(b) (3) (ii) of The Rights in Technical Data and Computer Software clause at 252.227-7013 of the DOD
FAR. Unless otherwise indicated, the manufacturer/integrator is Commodore Business Machines, Inc.,
1200 Wilson Drive, West Chester, PA 19380.

The material set forth in the AmigaDOS User’'s Guide is adapted from The AmigaDOS Manual, 2nd
Edition, Copyright © 1987 by Commodore-Amiga, Inc. used by pemission of Bantam Books. All Rights
Reserved. The Times Roman, Helvetica Medium, and Courier fonts included in the Fonts directory on the
Fonts disk are Copyright © 1985, 1987 Adobe Systems, Inc. The CG Times, Univers Medium, and
LetterGothic fonts included on the Fonts disk are Copyright © 1990 by Agfa Corporation and under
license from the Agfa Corporation.

DISCLAIMER

With this document Commodore makes no warranties or representations, either expressed or implied,
with respect to the products described herein. The information presented herein is being supplied on an
"AS 1S" basis and is expressly subject to change without notice. The entire risk as to the use of this
information is assumed by the user. IN NO EVENT WILL COMMODORE BE LIABLE FOR DIRECT,
INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY CLAIM
ARISING OUT OF THE INFORMATION PRESENTED HEREIN, EVEN IF IT HAS BEEN ADVISED OF
THE POSSIBILITIES OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE LIMITATION OF
IMPLIED WARRANTIES OR DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY.

TRADEMARKS

Commodore, the Commodore logo, CBM, and AUTOCONFIG are trademarks of Commodore Electronics
Limited in the United States and other countries. Amiga, AmigaDOS, Kickstart, Workbench and
Bridgeboard are trademarks of Commodore-Amiga, Inc. in the United States and other countries.

MS-DOS is a registered trademark of Microsoft Corporation. CrossDOS is a trademark of Consultron.
Compugraphic, CG, and Intellifont are registered trademarks of Agfa Corp. CG Triumvirate is a trademark
of Atga Comp. CG Times is based on Times New Roman under license from The Monotype Corporation
plc. Times New Roman is a registered trademark of Monotype Corporation. Univers is a registered
trademark of Linotype AG. Universe is under license from Haas Typefoundry Ltd. Diablo is a registered
trademark of Xerox Corporation; Epson is a registered trademark of Epson America, Inc.; IBM and
Proprinter XL are registered trademarks of Internationa! Business Machines Corp; Apple, Macintosh, and
Imagewriter are trademarks of Apple Computer, Inc.; LaserJet and LaserJet PLUS are trademarks of
Hewlett-Packard Company; NEC and Pinwriter are registered trademarks of NEC Information Systems;
Okidata is a registered trademark of Okidata, a division of Oki America, Inc.; Okimate 20 is a trademark of
Okidata, a division of Oki America., Inc. This document may also contain references to other trademarks
which are believed to belong to the sources associated therewith.

Coverdesign and Print by Village Tronic
Village Tronic Marketing GmbH, Wellweg 95, 31157 Sarstedt, Germany

This book was produced using a variety of Commodore systems by Kitsel Outlaw, Ross
Hippely, Barbara Siwirski, and Carina Ahren.

P/N: 371085-01

Table of Contents

Chapter 1

Selecting an Interface

Choosing Your Interface...........ccccccveiriiininnnnnnicrniineninsnnnesssssenossens 1-2
WOTKDENCH USETS.......oiitiiiiiiiiiiiie ettt et 1-2
SREIUSEIS ...ttt st eesra et e e e esbaeennne s 1-3

AMIGaDOS TASKSccvvecreiimririirinrrrrseeneseteensrsesaesesennesssssesesassnsssasans 1-3

Chapter 2

Understanding the AmigaDOS Shell

About the Shell........cccieerieccerrrccreecrrrr et ssnersenassns

Opening Shell Windows

Closing Shell Windows.......

Using the Shell ... s -
Command Line Editing and Controlcccoceciiiriiiininieeeiere e 2-5
Using the Command HiStoryc.c.ooiiiiiiiiiiiiiiiie e 2-6
Copying and Pasting....... «occeuuiiiiiiiiie e e 2-7

Working with the Shell..........cocoiiiii s 2-9

iv Table of Contents

Chapter 3
Working With AmigaDOS
Managing Files, Directories, and Disks............cccceccervirenrceiircncisenns 3-1
File SYstem TermMSccccceviviiiiiiniicniectcece e 3-2
File Management...........ccccooiiiiiiinieneneerest ettt s enee e 3-2
DOVICES ...ttt et 3-3
DIFECIOMIES ...ttt e e 3-5
FAlES . e 3-5
ANO FIES .o 3-5
Naming ConVENLIONScooueiiiiiiiieiiteee ettt 3-6
KEYWOTASeiiiiiiiiiiieieenitecie et eee e st e sb et e e sate e st eesneesbeeesbbeesraenan 3-7
Command Line BasicCsccccvninninninnnnncinmnscnsinssnsssnscssessesnens 3-7
Files, Programs, Commands, and SCrPtS..........ccevvveevveinirinerenreenreennee 3-7
FHIBS .o et 3-8
Programs..........ccooiuiriiiieiieieeeet ettt 3-8
COMMANGScuiiiiiriieiieieiieente ettt st s ens 3-8
SCIPES ..ttt e st e e e beeenes 3-8
Search Pathc..ccooiiiiii e 3-9
CUITENt DIr@CLONYeiiiiiiiieeic et e 3-10
Types of COMMANAScoccriiinincnininisneeicsensssenesssssssssssssesssssnnsas 3-11
AmigaDOS Command Structurec.cccoivercnrincnnisannnsnersssennanes 3-12
Special AmigaDOS Characters.............ccccveerrrrnurreenncsenssencssssssases 3-14
Command Line Charactersccceoieieeneneenennenienee e 3-14
Pattern Matching ... 3-16
Wildcard Characters............cooceeveieiieinieinieniieeciee s 3-16
Redir@CHIONoiiiiiiiiieeeee et 3-18
Angle Brackets..........ccooiiiiiiiii e 3-18
RUNNING Programsc.c.ccceerrrenennersnissecsncssesssssssesssnessassssssesans 3-20
Running Programs in the Backgroundccccoeeeneniciiccninincecenen. 3-21

Refining Your AmigaDOS Environmentccccoeeveecinnnnncnerennnnes 3-22

Table of Contents v

Chapter 4
Using the Editors
[1 0 LSRR .- cerrereesinnesssansasenees 4-1
StArtiNG ED ... 4-3
USING ED ..ottt et ettt e 4-4
Immediate CommMAaNdscoceeririiier et 4-4
Moving the Cursor in Immediate Modeccccceeevieeveniiiieeninnenns. 4-4
Inserting Text in Immediate Mode..............cccoeoviiniiiiiiinncn e 4-6
Deleting Text in Immediate Modeccocervieiiiinciicen e 4-6
Changing Case in Immediate Mode.............ccocervveinininiiieniiiinnnias 4-7
Extended Commandsccceevviiiinir i 4-7
Using String Delimiterscoocccvviiriier ettt 4-8
Using a File Requesterccccoriirieiiiicnniereenee e 4-8
ED MENUS ...ooveieeieiete ettt vt sttt eeme e 4-8
Enabling Expanded MeNUS.............cccccoverieiinieneniecne e 4-9
Project MENU........cooiiieiiiectieteeite e ettt s 4-11
Edit MENU ..ottt et sae s 4-12
Movement MENUcoceviroriiiiiniiiinies s 4-13
Sarch MenU.....c.c.coiiiiiiiiiiie e 4-13
Settings Menu...........coceeveeninenne e et e s 4-15
SOt FN K@Y ..ottt et ettt st e e 4-15
Special Koy Mappingscocccvivierienieriiieeeneeeeeesseeeereeeeee e 4-16
CommaNd MENU.......c.coeiiiiiiiiie ettt ee e saare e 4-18
Other ED Commands..........ccocueiieriiieeiiniienecrieeeeceieeceeneesessennnneens 4-18
Repeating Commands in Extended Modeccoccceeeiniiiicinnniciinnnen, 4-20
CustomizZiNG EDoooiiieiiiii et 4-21
SetMenuU HEM.......cooiiiiiii et e 4-21
Printing From ED......ccccooiiiiiiiiii e 4-23
QUIING ED ..ot 4-24
AREXX SUPPORccoiiiiiiiiiiie ettt ee e e e e ee e e ebrse s 4-24
ED/ARexx Example Program...........cccoccoeviiiiniiinniiniicncnic e, 4-25
MEMACSccciiiniiinniitiiinticnssasnsassssnssssssasssnsssssassssssssssnsssessesssnsssnsss 4-27
Starting MEMACScccooveiiiiiiiiiiiciecee s 4-27
MEMAacs Commands.........ccoccvrvirriieeiniieniicicnec et 4-28
MenU COMMEANGASccuiiiiiieiiie ettt s 4-30
Project MENU........cccooiiiiieiieeeee et 4-31
Edit MENU ...t e 4-33
WINAOW MENU ...t 4-35
MOVE MENU ...t 4-35
LN MENU ..cnueiiiiiitie et 4-36

WOPRA IMEBNU ..ttt e e e s e e s seeeeeeereesesraanennanees 4-37

vi Table of Contents

Search MenU.......c.ccooviiiiiiiiiiii e 4-38
EXtras MenU........ccoviviiiiiiiiii e 4-39
Commands Not in MENUS...........cc.coviiiieniiniiiiineet e 4-41
Customizing MEMACS......c...ccooiiiiniiiiienteece et 4-42
QUItING MEMACScoeeiiiiiieeeete et 4-43
1] N 4-43
StArtiNG EDIT ..coiiiieeie ettt e sttt sveeneea 4-44
EDIT COMMANGScoriieiiiiiiieieieee ettt 4-45
Selecting the Current Line...........ccocieeiiiiviiieiiiiiiee e 4-46
Editing the Current Linecccccoevveiiiinniiiiecc e 4-47
Inserting and Deleting Linesccccooveeviieiiiiiniiiieecicenee e 4-47
Editing Line WINdOWS..........cccocviiiioiiiiiiiiicccreic s 4-48
Splitting and Joining LIiNeSc..cccooiveriiieniiinerccie e 4-50
Renumbering LINEScccociiiiiieiciiire et sree s 4-50
Verifying LiNesccioiiiiiii e 4-51
Inspecting the Source Filecccoooiveiiiiiiiiicccee, 4-51
Making Global Changes..........cc.cecceriiciiniinenienieceecee e 4-52
Changing Command, Input, and Output Files............cc.ccccoenvineennes 4-53
ENAING EDIT ..ottt ettt et et e s ee e e e s sanes 4-56
Chapter 5
Using Scripts
Understanding Scriptsc.cccvveiniciiinniinnininsinnennnessenn 5-1
Kinds Of SCHPLS ...cocvtiiiiiiii ittt ettt ee s 5-2
WHhen to USE AREXX.....ccceiriiiiiriiiie ittt 5-2
SIMPIE SCHIPLS ..ottt 5-3
AULOMALIC SCHPLS ..eevviiciiiiiie ittt 5-3
Special Script Charactersc.ccocerverrerrnrnsncsnrcssssnressssenesseasens 5-3
Script Commandscccreceriirceennrnrcresrcnereseeessseessnersesasssessasessnssesas 5-5
Script-Specific COMMANASc.cocveriieiieiieeeee e 5-6
Dot COMMANGSooueimiiiiiiiti ittt e 5-6
Allowing ArgUMENEScc.ooiiiiiiiiiiicee e 5-7
SUBSHIULONooviiiiiiiciccc e 5-8
Defaults ... e 5-9
COMIMENES ...ttt ettt ettt b e e e saes 5-10
Nesting COMMEANGS.......c.ociriiiiiiiie et s a e enes 5-10
Interactive Script Files..........coccoiiiiiiiiniiereeee e 5-11
Repeating Commands..........c..coouiriiiienienierceniesie e sae e 5-12

ENding @ SCrHPL.....cooiiiiii e e 5-12

Table of Contents vii

Condition FIAagsc.ccvecminnmeniiinciericnnsnsenscsesiensssssssssssnssasssssssses 5-13
Debugging Script Files.........c.ccucriciiinccencrccericenrccerrsenecsnenssseeens 5-14
Using Environment Variablesc...cccoveervreerneeinscecrcncrcscennssennes 5-14
Creating Environment Variables ..o 5-16
ST it et e e sttt e e e e ta e e e nraeaeeetnaaaens 5-16
SETENV ..ttt ettt ettt e sve et s ssaee st esse e raeenaeas 5-16
Chapter 6
AmigaDOS Command Reference
Command Documentationeeiriiiiicinniennniicicnnnnnscrenceeenenee 6-5
FOMMAL ...t sttt et st a et s abeesree s eebaeeraetesans 6-6
TEMPIALEooeiiiieee ettt et e e sttt aeeeanbiaeeeas 6-8
Command Listing........ccccoiimmiiinnininiiinininnnnenicniissssssnnesissnsssesenenes 6-10
ADDBUFFERScooi ittt e et e eneee s 6-10
ALIAS L e a e e e eaae s 6-11
A S e e e e e et reraae e e eraeeeaeaaas 6-12
ASSIGN. ... et a e e e e e eeeeenes 6-13
AVAIL ..ot e et e s e e eaa s 6-17
BREAK ...ttt ettt e e et e s et 6-18
{7 B O PR UPPPRRUPPRPPPIOE 6-19
CHANGETASKPRI. ...t ee et eeeeeee e 6-21
(010 = 2P URO I ORPPRRPN 6-22
(3 = & PP ST PR PPT 6-24
DATE ettt e s e et a e et e s e e snraas 6-26
DELETE .o et e e e ettt e e s e e st e e 6-28
[OO PP PPPPPPRTRUORt 6-29
DISKCHANGE...... ..ottt e et e e e e s enetetae e e s eesseannees 6-32
[@1 - [TP PPRUPPURRURUOOt 6-32
D e et s st a e s ebee e es 6-33
L] N PSR UP T U PP PPN 6-34
B S E . e ettt et e e e e et e e et eee e e naane 6-34
ENDCLI ..ot e ettt e e e s e e e st e e e e e e e e e eeaaee 6-35
EN DI Lt e ettt e e e e et eeeeeeeenaan 6-35
ENDSHELL ...t e e e e e e e e neneee 6-36
ENDSKIP ...ttt et ettt e e s be s e e rae e ene 6-36
EV AL oottt s e e s e e e eaes 6-37
EXECUTE .ottt ettt e e et e saneees 6-38
FAILAT ettt et e e e et e e st ee s e e e s enebe s 6-39

viii Table of Contents

FILENOTE ..ot 6-41
GET ot s 6-42
GETENV ..o s 6-43
ICONX ... e 6-43
LB e 6-45
INFO ..ottt 6-46
INSTALL ..ottt sttt s st e e 6-47
JOIN et s 6-48
LAB .o 6-49
L ST e 6-49
LOADRESQOURCE ..ottt 6-52
LOADWSRB.........ociiiiiitiicce sttt sttt e e 6-53
LOCK et s s 6-54
MAGTAPE ..ottt sae s 6-55
MAKEDIR ..ottt 6-56
MAKELINK ...ttt et 6-57
MOUNT L.ttt n 6-57
NEWCLI ..ottt 6-59
NEWSHELL......coiiiiiiiiieccctcenteer e 6-59
PATH o s 6-62
PROMPT ..ottt ettt e 6-64
PROTECT ..ot 6-65
QUIT ottt e s 6-66
RELABEL ..ot 6-67
REMBAD ...t 6-68
BENAME ... 6-68
REQUESTCHOICEcoiiiiiiiecireieinee et 6-69
REQUESTFILEoooiiiiiiiiicceccccctetcei e 6-70
BESIDENT ..ottt sttt sttt s s s 6-72
BUN oottt 6-74
SEARCH ...ttt et 6-76
ST ettt 6-77
SETCLOCK ...ttt ettt s 6-78
SETDATE ..ottt ettt eb e e ra e 6-79
SETENV ..ottt et 6-79
SETFONT ...ttt et ae b neen 6-80
SETKEYBOARD ..ottt 6-81
SKIP ettt 6-82
SORT ..ottt sttt b s 6-84
STACK .o b e 6-85
STATUS ..ottt et 6-85
TYPE .o e e 6-86
UNALIAS ...t 6-87

Table of Contents ix

UNSETENV ..ot ee e et e e e e eaeseeesrraneseeaneees 6-88
VERSIONt e e e vte e e eeteee e eebeeeeesnsaeeeasnes 6-88
L Y I R 6-89
WHICH ...ttt et e e e e e e e etaae e e s eeabananans 6-90
1T N 6-91

System COmMMANGS........ccccccerermrirerrrncerissensssssnsessessssssssnssessonssssnsns 6-92
ADDDATATYPES ...ttt snb e s eesevanenans 6-92
BINDDRIVERSoeoioeeeee ettt et s e neeee et aaeeeeennaaas 6-92
CONCLIP ... ettt e ee e e e e e s eebereesrenbneseennes 6-93
IPREFS ..ot et e e e ete e e et nae e eeneareaeeaaea s 6-93
SETPATCH .ot eere e e eaee e eebre e eeanes 6-94

Chapter 7

Workbench-Related

Command Reference

Preferences Editorscoereerererivrcneeneeennn 7-4
FONE .ot e et e e b e e et e e e e e eeareaaeaees 7-5
(07T 011 £) IEUN USROSt 7-5
INPUL ..ttt ettt e et ae e sabee s e eanes 7-6
| oTox |- YU SO RUPPRSRS 7-6
OVEBISCAN.....uevveeeieeiiereeeieeeeeeeeeee et eeeee e e et e e e ee e et s e reeeeseeeeseeteeaeeessessessssraessnen 7-7
PaalBteo et ae e e aaaaaaes 7-7
[T oT 1 (T RSPt 7-8
120 (1) (=] SO U PROPORNS 7-8
o0 (4] (=1 4 €1 . SRRSO SRS 7-9
PN I S .. et e aaaeaaaaaaes 7-9
SCIEENMOUE......ooo i 7-10
SOIIAL. ...ttt e e aeaeeas 7-10
SOUNG ...t e e e e e e e et e e e e e e e s erbra e e aaaraeeaaenas 7-11
L1 1= TSRO URPP 7-11
WBPAEIN ...t a e 7-12

Commodities Programs.......c.cccceccvreiecrinsennssneinsssssensssesesssesssssssnes 7-12
AULOPOINE. ...t et e e e eaes 7-13
BIANKET ...ttt ee e et e e e e e e e e e e e e e e e abeaaaaaeaaeeeearares 7-14
CHCKTOFTONt ... 7-15
CrossSDOS ... e 7-15
EXCRANGEoeiiiiiiiie e 7-16
FIBY ettt et sttt a e e b et s e e e saee et 7-16

X Table of Contents

NOCAPSLOCK.coiiiiiiiiiiiiiiiecceiert ettt e seee s raeeemae e sneeeane 7-17

Other Workbench-Related Tools and Programs............cccccveuueenee 7-18
CalCUIAION ...ttt ettt st et ae e s esareesaneesane 7-18
ClOCK ..ttt sttt s e beetassteene e e s e tesabeenbeesaeeaeens 7-19
CIMD ..ttt ne et e e a et e bbb e et e nre et 7-20
DISKCOPY ...ttt s 7-21
FIXFONES ..ottt e e e b n e s eannes 7-22
FOMMAL ... ettt ebee e 7-23
GraphicDump ettt b e et b e ra e eetaeshe e bt s b r e e be e s be e st reeannee s 7-25
ICONEMIt ...t e e 7-26
INIEPHINEET ...t s e e srree e e 7-26
1101 (=11 1) (o] o | SO U U STOUP ORI 7-26
KEYSNOW ...ttt ettt s 7-27
MEMACS ...ttt ettt e e et eesabbe e e s snreeeeens 7-27
VIOTE .ttt ettt s e e sab e e bt e s bee e enre e sbre et 7-27
MURIVIBW ...ttt ettt snae e 7-29
NOFASMEBIM ...ttt e saee e 7-32
PrepCard......ccoi ittt ettt ee et be et 7-32

Chapter 8

Command Examples

BasiC TASKScccccvvirininiirneninnnennncisensssenesssnssssssessenssssessssssssssnsanssases 8-1
Opening @ Shell WINAOWcccciiiiiiiiriiie e s 8-1
Running Programs from the Shellc.ccccooviiiiiinieniiieneereerie e 8-2
StOPPING @ PrOgramcccuoviriiieiiirierererie st reseeesste e snae e seeesreesnseenes 8-2
Changing the Current DIrectory.............coeeerieerinceiniercr e e 8-3
Changing the Search Pathcccoeviiiiiiieiiii e 8-4
Displaying the Contents of a Directory..........c.ccccocvereevcveriencverce e 8-4
Copying Files and DIreCtoriescccccuvviiieiiincieciec st 8-7
Creating a User-startup File.............ccceeiiieivieiiiieeecce e 8-8
Creating an ASSIGNMENL.........c...coieiieiiiieee et 8-9
Accessing the Expanded ED Menus...........c.cccceeeeiieireeeneescerseesvenenens 8-10
Working with a Single Shell...........ccccccoiiiiriininnireccere e 8-10
AHACNING ICONS......c..eiiiiiieiiiic ettt e s 8-11
Creating Scripts Conveniently...........ccccoeoeriieiiineieeereeee e 8-12

Occasional Tasks........c.cceeiineiiinercnnsnnsnrennsssnreneressessnsssasssansessesssneses 8-12
Creating Aliases To Reduce Keystrokes..........c.ccceveerevrienenciceninennenn, 8-13
Customizing NEWSHELLc.ccoooiimiiiiiiiiereee et 8-13
Modifying the Promptcccoiieiiiiiiicr e e 8-14

Creating a Custom Ram Disk ICONccocovieiieieieiiiiiee e 8-15

Table of Contents Xi
Deleting Files With 1CONSccoiveiiiiieiee e e e 8-16
Testing COMMANGScocieriiiiiiie ettt e et et aeeneeas 8-16
Creating a Script to Move Files...........coevieiiiriiiiee e 8-17
Deleting with Interactive DIR.............coccoiriiiiiiieecc e 8-18
Generating Scripts with LIST LFORMATcccoviiiviiiieecieer e 8-19
Customizing LIST OUtPULcoiiiiiiiiie et 8-20
Using ICONX t0 RUN SCrPES ...cveiiieiiriiesiieee et 8-20
Preventing Displayable Output From Scriptsccccoccveiieriineiciecnennne. 8-21
Entering and Testing ARexx Macros...........cccccvreenceinerinseienie e, 8-21
Sorting and Joining Files...........c.ooviiiiiiiiiiinire e 8-21

Advanced Taskscccceviieiiinmniinsinsn e ssae s sssnesans 8-22
Testing Software Versionsccccciviviieeniiininc i 8-22
Flushing Unused Fonts and Librariescccoveviviiniiiiiiennecciencnenas 8-22
AmigaDOS Loops USING EVALc.covviiiiiiiriiiiecie et 8-23
USING PIPE: ... ittt 8-25
Recursive AmigaDOS Command SCriptS.......c.cocveeveeniiiiniernire e 8-26

Appendix A

Error Messages

Appendix B

Additional Amiga Directories

DEVS .t ae s s s e e s b s as s ane B-3
DEVICO FilSooeoniiiiiiiiiii et B-3
Oher FlES.. .ottt et B-4

Using Mount Files or a MountListcocoiiiiiiiin, B-4
Creating a Mount File or MountList Entryccccooecviiiiiiniinnn. B-5

S DIrECROTY ... et e sam s e s sans s s s s e mananens B-8
ED-StarUPoooiiiiiiieeie et et eeeenns B-8
SPat, DPAt ...ttt ettt s B-9
POD .ttt et B-9

(IR 0 T1-To] (o] o VOSSO B-10
Aux-Handler ..o B-10
Queue-Handler (PIPE:) ... B-11
Port-Handler............coooiiiii e e B-11

CrossDOSFIlESYStemcooiiiiiiiiiie it B-11

Xii Table of Contents

FileSystem_Transccccoiiiieiiiiiieceeecreee e e B-12
CDFHESYSIEMeeiiiiiiiiieiie ettt seae s B-12
FONTS ...ttt s sseesnsessssssesssansnsnanans B-12
Bitmap FONESeiiiiiiieee e e e B-12
OULlNG FONES......coiiiiiiiiiiiiietee e s B-13
LIBS: DIirectory.......ccccvvciiicinniiiinisninisssenisssensinssssssssssssnsssssssnsssssssnes B-13
REXX: o cietiiseiennnionssissnioisnrsosssnmmsansssanesssssssnsnsssesssnssossassasanssssasssseness B-15
LOCALE:........co i rricnriinnansensssenssssseesssnnssnnssssssessnssesnsssssasssssnes B-15
ENVARC........ s sssenssss s sasssssssasasans B-16
ENV ittt ae s sssns st sesr e e s snesrae sas s s e sna s nenenns B-16
CLIPS: ...ttt sae s e as s an s s s ae s B-16
L B-16
L0 T =TT B-17
O B-17
Appendix C
Using Floppy-Only Systems
Making Commands Resident............c.cccccvnnnnninncninnnncnscnnnnnnenns C-1
Preloading Resources...........cccccccerrircmerecsneniccsesecsennesessscnserssssnesenss C-2
Using ASSIGN's PATH Option...........ccoecciniiivininncinncnnenncecsenisnenas C-2
Removing Files From Your Workbench Disk..............ccceveinrunranen. C-3
Files YOu Can Deletecooueeiiiiiiieiiiiiiteiiee sttt C-4
Files To Avoid Deletingcccoiviiiiioieicieen e C-4
Using the Ram DisK..........ccocevrrrcerererceerscsrssensnnesnesseessarseseessansessessane C-5
Copying From One Disk to ANOthercccccveeieivieciieeeecieeceeeee e C-6
Recoverable Ram Disk..........c.ooeriiiiiiiiineeceserc e C-6

Bootable RAD:ouviiiiiieeeieeeeecee et C-7

Table of Contents Xiii

Appendix D
Advanced AmigaDOS Features
Customizing the Windowcccceecerccnivniserenenesnsenresennsneesseessnsesenes D-1
Public Screens - PUBSCREEN Optionccccecvevenieeneneniieeneneninne D-1
Customizing the Shell............ccciniinci s D-2
USING AlIASESoeiineiiieiiei ettt e e ettt e et ae e e saree e e sbeeeasnnes D-2
Changing the Promptcoooiiiiiieiee ettt D-3
Using ESCape SeqUENCES...........ccccceicreeecsenscereneenenscssannecsssessosesesesnss D-3
Customizing Startup Files..........cccooomieeeee et D-6
Editing Startup FileS............cooviviiiiiiee e e e D-7
Common Additions to the Startup Files............ccccoeorieinienniiieeee D-8
USINg PIPE:.uiirecccereerrceetscccsenesresnerse e sesnseessssssnesessanasenssassanans D-9
Glossary

Index

Welcome

The Commodore® Amiga® line of personal computers offers a unique
combination of versatility, computing power, and usability. The fast,
multitasking Amiga operating system allows users at any level of
experience to take advantage of their system's resources.

AmigaDOS™ is the Amiga Disk Operating System. A disk operating
system is software that manages data manipulation and control on
the computer, such as:

e Providing a filing system that organizes the data that programs
use and produce

« Handling information storage and retrieval from floppy disks,
hard disks, and other storage media

e Providing an interface to peripheral devices, such as printers and
modems

AmigaDOS provides a Command Line Interface (CLI), which means
that you work with it through typed commands. Some of these
commands parallel familiar Workbench™ operations, such as Copy,
Rename, and Format Disk. There are also advanced commands that
allow you to create scripts for performing repetitive tasks, to monitor
the use of memory, and to perform other tasks unavailable through
the Workbench. The commands are entered through a special
window, known as a Shell window. Shell windows open on the
Workbench screen and are similar to other Workbench windows,
except that Shell windows only display text.

Together AmigaDOS and the Amiga Shell offer you a powerful and
flexible operating environment with these features.

Xvi Welcome

Operating System Features

« Complete control over all aspects of Amiga operation
o Hierarchical file system

o Filenames up to 30 characters, upper/lower case preserved
without case-sensitivity

e Configurable command search path

o Pattern matching

¢ Background command processing

« Many commands internal, others can be made memory resident
e Shared libraries

o Multiple file systems supported, including CrossDOS (MS-DOS
file system)

Shell Features

« Multiple, independent Shell windows

« Shell windows sizable, draggable, depth-adjustable
e Configurable prompt, font, and text color and style
« Command history and command line editing

o Fast character-mapped display

e Aliases

+ Local and global environment variables

« Scripting

+ Command input and output redirection

« Multiple directory assignment

« Copy and paste text among console windows

« ARexx support

Welcome Xvii

Using this Manual

This manual, which should be used in conjunction with the
Workbench User's Guide, describes the AmigaDOS software, its
components, and how to use it. It assumes that you are familiar with
Workbench, but have never worked with AmigaDOS. If this is the
case, we recommend that you read through the entire manual to learn
the concepts associated with the Amiga operating system before
beginning to use it. After you have familiarized yourself with
AmigaDOS, use this manual as a reference tool when executing
commands or writing programs or scripts.

The following is a brief description of each chapter and appendix:

Chapter 1. Selecting an Interface: This chapter gives information
to help you determine when to use AmigaDOS rather than
Workbench.

Chapter 2. Understanding the AmigaDOS Shell: This chapter
describes the AmigaDOS Shell in detail.

Chapter 3. Working with AmigaDOS: This chapter describes the
file management system, types of commands, and components of
AmigaDOS commands.

Chapter 4. Using the Editors: This chapter provides a full
explanation for using the ED text editor and command listings for the
MEmacs and EDIT text editors.

Chapter 5. Using Scripts: This chapter describes AmigaDOS
scripts and how to create them.

Chapter 6. AmigaDOS Command Reference: This chapter
describes each AmigaDOS command in detail.

Chapter 7. Workbench-Related Command Reference: This
chapter describes the Workbench-related commands usable from
AmigaDOS.

Chapter 8. Command Examples: This chapter provides examples
of how to perform common tasks with AmigaDOS commands.

Appendix A. Error Messages: This chapter contains a list of
possible program problems and suggested solutions.

xviii Welcome

Appendix B. Additional Amiga Directories: This chapter
describes S:, DEVS:, L:, FONTS:, and other directories.

Appendix C. Using Floppy-Only Systems: This chapter tells you
how to make the most of your system if you only have one floppy drive
and no hard drive.

Appendix D. Advanced AmigaDOS Features: This chapter
provides information on customizing AmigaDOS for advanced Amiga
users.

A Glossary and an Index follow Appendix D.

Documentation Conventions

The following conventions are used in this manual:

COMMANDS, Commands, their keywords, device names, and
ASSIGNS, DEVICES, assigned directories are displayed in all upper case
and NAMES letters. File and directory names are displayed in

initial caps. However, they do not need to be entered
this way. The Amiga ignores case differences in
commands and arguments.

<n> Angle brackets enclose variable information that you
must supply. In place of <n>, substitute the value,
text, or option desired. Do not enter the angle
brackets when entering the variable.

Courier Text appearing in the Courier font represents
information that you type in or text displayed in a
window in response to a command.

Key1 + Key2 Key combinations displayed with a + (plus) sign
connecting them indicate pressing the keys
simultaneously. For example, Ctri+C indicates that
you hold down the Ctrl key and, while holding it down,
press C.

Key1, Key2 Key combinations displayed with a comma separating
them indicate pressing the keys in sequence. For
example, Esc,O indicates that you press and release
the Esc key, followed by the O key.

Welcome Xix

Return Directions to press the Return key indicate that you
press the large odd shaped key on the right side of
the keyboard above the right shift key.

Enter Directions to "enter" something indicate that you type
in the indicated information and press Return.

command line On command lines that are long enough to wrap to the

indentation next line, this manual shows the wrapped lines as

indented for documentation purposes only. In
practice, the wrapped lines align with the first
character of the Shell prompt.

Related Documentation

AmigaDOS Quick Reference
Workbench User's Guide
ARexx User's Guide

In addition, the Amiga ROM Kernel manuals published by Addison-
Wesley provide technical documentation of AmigaDOS for
programmers and developers.

Chapter 1
Selecting an Interface

Although the Amiga comes with the Workbench graphical user
interface (GUI) and most AmigaDOS operations can be run from the
Workbench without opening a Shell window, there are several
reasons to also learn how to use the AmigaDOS command line
interface. Among the advantages of working directly with AmigaDOS

are:

Personal preference

Some users prefer working with text and keyboard rather than a
mouse and icons. This may be a matter of personal taste or due to
familiarity with some other text-based computer system.

Workbench limitations

Although most basic operations can be accomplished with equal
ease through the Shell or the Workbench, there are functions that
can be done only with AmigaDOS commands. These include
certain basic system configuration tasks and the running of
scripts and utilities that do not have icons. Note that all
AmigaDOS functions are available in Workbench using the
Execute Command item in the Workench menu.

Speed

Users who can type reasonably well and are familiar with
AmigaDOS commands often find that typing a command is faster
than performing the equivalent operation with the mouse. This is
particularly true when more than one command must be
executed. Shell-based capabilities, such as pattern matching and
redirection, make some tasks particularly easy when compared to
Workbench methods. In addition, the text output of AmigaDOS
commands usually displays faster than do requesters and
windows full of icons.

1-2 Choosing Your Interface

¢ Control and flexibility

Running programs from the Shell makes it easier to control
Amiga multitasking. Also, when using applications, such as
software compilers that offer numerous run-time options, it is
quicker to specify often-changed options on a command line than
by editing the Tool Types of an icon.

e Scripting

Performing complex, repetitive, and/or unattended tasks is
difficult, if not impossible, using a GUI. Such tasks are ideally
suited to scripts, which are text files of AmigaDOS commands.

« Saving resources for your applications

The text interface requires less memory, disk space, and other
system resources than the graphic imagery of a GUI.

Choosing Your Interface

Although some users prefer to use the Shell or the Workbench
exclusively, most can make use of both once they learn the basics of

AmigaDOS. Because Shell windows open on the Workbench screen, it
is easy to switch back and forth between the two methods of working.

Whether you do something through the Workbench or the Shell

depends on the method that appears easiest to you for that particular

task.

Workbench Users

Although you can work primarily in Workbench, we recommend that
you become familiar with AmigaDOS because you may need to use
AmigaDOS commands or examine a script to determine its function.
The many convenience features of the Amiga Shell make the process
of learning and using AmigaDOS considerably easier than most
command line systems. If you prefer not to use AmigaDOS directly,
you can attach scripts and Shell-only commands to icons.

AmigaDOS Tasks 1-3

Shell Users

For Shell users who choose not to open the Workbench, the Amiga's
built-in GUI support is still an asset. Shell windows—Ilike
Workbench windows—can be quickly moved, sized, depth-adjusted,
and opened or closed at will using the mouse. Shell windows can be
opened on public screens other than the Workbench. FKey,
MouseBlanker, and other Commodity utilities allow you to further
customize your command line working environment.

AmigaDOS Tasks

When determining the most efficient way to interface with your
Amiga, use the following table to identify where specific tasks are
discussed. Then compare the AmigaDOS method to that available
through Workbench. Select the method that is easiest and most
comfortable for you to accomplish your goal.

Setting up your Preferences Where to find it
Selecting a language Chapter 7
Selecting a keyboard type and mouse options Chapter 7
Selecting the default display mode Chapter 7
Editing Workbench colors Chapter 7
Setting the system time and date Chapter 7
Selecting system fonts Chapter 7
Selecting printer options Chapter 7
Editing the mouse pointer Chapter 7
Selecting Workbench background patterns Chapter 7

Specifying the display beep sound type Chapter 7

1-4 AmigaDOS Tasks
Setting up your disks and work environment Where to find it
Formatting and copying disks Chapter 7

Adding directories to the search path
Creating aliases

Assigning directories and devices
Using the ASSIGN PATH option
Making commands resident

Customizing startup files

Creating new directories

Setting CrossDOS options

Setting up function keys

Preparing PCMCIA memory cards for use
Preloading resources into memory

Making room on your Workbench disk
Using mount files and MountLists

Chapters 6, 8

Chapters 6, 8
Appendix C

Chapters 6, 8
Appendix C

Chapter 6,
Appendix C

Chapter 6,
Appendix C

Appendix D
Chapter 6
Chapter 7
Chapter 7
Chapters 6, 7

Chapter 6
Appendix C

Appendix C

Chapter 6
Appendix B

Learning AmigaDOS and the Shell

Where to find it

Deciding when to use AmigaDOS

Opening and closing Shell windows

Activating a Shell window

Understanding the basics of a command
Understanding the command line format
Understanding the command template
Understanding special characters in AmigaDOS
Using pattern matching and wildcard characters

Chapter 1
Chapters 2, 6, 8
Chapter 2
Chapter 6
Chapter 6
Chapter 6
Chapter 3
Chapter 3

AmigaDOS Tasks

Learning AmigaDOS and the Shell
(cont'd)

Where to find it
(cont'd)

Using command line editing

Using command history

Revealing previous command output

Using copy and paste

Specifying paths

Working with a single Shell

Understanding disk-based and internal commands
Customizing the Shell window

Knowing the standard directory structure
Naming and renaming disks, files, and directories

Chapter 2
Chapter 2
Chapters 2, 8
Chapter 2
Chapters 3, 8
Chapter 8
Chapter 3

Chapters 6, 8
Appendix D

Appendix B
Chapters 3, 6

Displaying information

Where to find it

Determining the current directory

Listing the contents of a directory (example)
Displaying a command's template

Listing information about files and directories
Using LIST LFORMAT (example)

Displaying or setting the date and time
Displaying graphics, text, and animation files
Using an on-screen calculator

Using an on-screen clock

Displaying the keyboard keymap

Displaying software version numbers
Changing the Shell window font

Getting information about file systems

Using escape sequences

Listing information about Shell processes

Chapters 3, 8
Chapters 6, 8
Chapter 3
Chapters 6, 8
Chapter 6
Chapter 7
Chapters 6, 7
Chapter 7
Chapter 7
Chapter 7
Chapter 6
Chapter 6
Chapter 6
Appendix D
Chapter 6

AmigaDOS Tasks

Running programs

Where to find it

Running programs from the Shell

Using the correct path

Changing the current directory

Redirecting command input and output
Stopping a program (example)

Executing commands as background processes
Using ICONX (example)

Chapters 3, 8
Chapters 3, 8
Chapter 8
Chapter 3
Chapter 8
Chapters 6, 8
Chapter 8

Using scripts

Where to find it

Running scripts

Exiting from a script

Editing text or scripts

Creating and modifying a User-startup file

Using scripting characters
Setting the s protection bit
Creating scripts automatically
Using PCD

Preventing screen output with >NIL:
Using script commands

Debugging scripts

Using environment variables
Creating loops using EVAL (example)
Creating a Move command

Chapters 5, 6
Chapter 6
Chapter 4

Chapter 8
Appendix D

Chapter 5
Chapters 5, 8
Chapters 5, 6, 8

Chapter 8
Appendix B

Chapter 8
Chapter 5
Chapter 5
Chapter 5
Chapter 8
Chapter 8

AmigaDOS Tasks 1-7

Text editors Where to find it
Using the ED editor Chapter 4
Accessing expanded ED menus Chapter 8
Using the MEmacs editor Chapter 4
Using the EDIT editor Chapter 4

Manipulating files Where to find it
Copying files or directories Chapters 6, 8
Copying disks Chapter 7
Deleting files or directories Chapters 6, 8
Deleting files with icons Chapter 8
Deleting with interactive DIR Chapter 8
Sorting and joining files Chapter 8
Testing commands Chapter 8
Using the Ram Disk Appendix C
Removing unused fonts and libraries from memory Chapter 8
Using pipes (example) Chapter 8,

Appendix B
Evaluating simple expressions Chapter 6
Locating specified text strings Chapter 6
Alphabetically sorting the lines of a file Chapter 6
Redirecting printer output Chapter 7

Updating .font files Chapter 7

1-8 AmigaDOS Tasks

Workbench-specific tasks Where to find it
Specifying Workbench parameters Chapter 7
Editing icons Chapter 7
Attaching icons to files Chapter 8
Creating a custom Ram Disk icon Chapter 8
Using ICONX Chapter 8
Using an on-screen calculator Chapter 7
Using an on-screen clock Chapter 7
Printing a screen Chapter 7
Creating Workbench background patterns Chapter 7
Blanking the monitor screen Chapter 7
Blanking the mouse pointer Chapter 7
Changing Workbench colors Chapter 7
Changing the mouse pointer Chapter 7
Setting input options Chapter 7
Specifying fonts Chapter 7
Selecting display modes Chapter 7

Starting Workbench from the Shell Chapter 6

Chapter 2

Understanding the
AmigaDOS Shell

An AmigaDOS Shell is a special window on the Workbench screen
that accepts text input, allowing you to communicate with
AmigaDOS. The Shell is a type of Command Line Interface or CLI.
This chapter describes the following:

e About the Shell

e Opening and closing Shell windows

« Using the Shell

About the Shell

You can communicate directly with AmigaDOS through a Shell
console window, a text-only interface that accepts input entered from
the keyboard. The Shell window looks and acts like a Workbench
window with these exceptions:

« Icons cannot be dragged into the Shell window.

« The mouse can only be used for copy and paste operations, except
within the ED and MEmacs text editors.

e Scroll gadgets do not appear.

e The AmigaDOS Shell window uses only a non-proportional font,

normally the System Default Text font (Topaz or Courier)
specified by the Font Preferences editor.

« Any Workbench background patterns set in WBPattern do not
appear in Shell windows.

2-2 Opening Shell Windows

Figure 2-1 illustrates a Shell window opened on the Workbench
screen.

Depth gadget——

— Close gadget Zoom gadget —

\
[llorkbench Screen L

p-17]

=a

é‘ | Norkbench linle

Poress

=g
=
5
| =

| R
=8
1=
=

=
%
— —— B

tard

e W

| IR H;\ﬂ
Prompt— Cursor Sizing gadget —

Figure 2-1. Shell Window

Like Workbench, several independent Shell windows can be open at
the same time. While commands entered in one Shell are being
executed, you can enter and execute different commands in another
Shell window.

Opening Shell Windows

Shell windows can be opened in one of two ways:

« Click on the Shell icon in the Workbench System drawer.
e Use the NEWSHELL command described in Chapter 6.

Closing Shell Windows 2-3

When a Shell window is opened:

+ The window is highlighted, indicating that it is the current
window

» A prompt appears, such as 1.8YS:>

» To the right of the prompt is a cursor, a small highlighted
rectangle

Like Workbench, only the currently selected window can receive
input. To enter information in a different window, click in it to make
it the current window. While a Shell window is the current window,
no menus are available in the Workbench title bar.

Closing Shell Windows

Use one of the following three ways to close a Shell window:

+ Select the close gadget
+« Enter the ENDSHELL command
¢« Press Ctrl+\

We recommend closing Shell windows when you are finished with
them. Any open window uses memory.

All non-detached programs that run from a Shell must be finished
before you can close the window. You can tell that a program is still
active if pressing Return does not produce a Shell prompt in the
window. Although you can still enter commands into such a window,
AmigaDOS does not respond to the commands until the running
program is exited.

Using the Shell

Enter AmigaDOS commands at the Shell's text prompt. Include with
the command any necessary information, such as file names or
command options. Press Return at the end of each command line to
execute the command. The Shell prompt reappears when the
command is finished executing.

24

Using the Shell

To see command output that has scrolled out of the Shell window,
enlarge the window by selecting the Shell zoom gadget or using the
sizing gadget. This reveals as much of the previous contents of the
window as fits. Figure 2-2 illustrates a Shell window before and after
using the zoom gadget to display the entire output of a LIST

command.

8, (nf
":g:ora'.{ g=m

mlfv dwiu
; l gr dp{f n?t.ps
: g{%’ nration‘

43 ¢ directories -
?ﬂwkﬁguchgnws'a;‘l" -

”p % fv

m'.m...: g ;:

’ ?% ""g B1-fipr-4
g | 23 185
3% locks and 5

Bglgrwers.unfu
Honitors, info
eynaps. info
Printers, info

pboard.device
' Vét! e
mue ice

printer,d ime .
siscm imtn
serial . di w};e

v{ ’mtioa

A

34 dos Himtoms
§ Morkbench:Devs® §

—».—
=

1§ ----rye

bmks uscd :

gridtitiiibicit
- aqlqn;;;;¥ ey ‘:1 i “:”;% : ;J‘:J;H

Previous Output Revealed

=1

zz:szsﬂntntn—-tn :

L o 1 20t o e

e P P e O G

et

el
Lo

3!

A o >

CAPS
Ly

Figure 2-2. Revealing Previous Output with the Zoom Gadget

Using the Shell

2-5

Command Line Editing and Control

To simplify entering and editing command line text, the AmigaDOS
Shell provides the following editing key and key combination options:

left arrow

right arrow
Shift+left arrow
Shift+right arrow
Backspace

Del

Ctri+H

Ctri+M

Ctri+J

Ctri+W

Ctrl+X

Ctrl+K

Ctrl+Y
Ctrl+U

Moves cursor one character to the left.

Moves cursor one character to the right.

Moves cursor to the beginning of the line.
Moves cursor to the end of the line.

Deletes the character to the left of the cursor.
Deletes the character highlighted by the cursor.
Deletes the last character (same as Backspace).
Processes the command line (same as Return).
Adds a line feed.

Deletes the word to the left of the cursor.
Deletes the current line.

Deletes everything from the cursor forward to the end
of the line.

Replaces the characters deleted with Ctri+K.

Deletes everything from the cursor backward to the
start of the line.

In addition, the Shell supports the following keys and key

combinations:

Space bar (or any
printable character)

Backspace
Ctri+C

Ctrl+D

Ctri+F

Suspends output (stops scrolling).

Resumes output (continues scrolling).

Sends a BREAK command to the current process
(halts the process).

Sends a BREAK command to the current script (halts
the script).

Activates and brings Workbench program windows to
the front.

2-6 Using the Shell

Ctrl+S Suspends output.

Ctrl+Q Resumes output if it was suspended with Ctrl+S.

Ctri+\ Closes the Shell window. When console I/0 is
redirected to another device with * restores normal
/0.

The Shell allows you to enter a command or other information while
listing output. However, this stops the output until you press the
Return key. The new command executes after the output is finished
listing.

If you enter a new command or text and then choose to delete it, the
original output resumes scrolling as soon as the last character is
erased.

Using the Command History

The Shell uses a 2 KB command line buffer to retain command lines,
which provides a command history. Using this history you can recall
previously entered command lines, edit them, and re-execute them.
This lets you easily repeat a command or enter several similar
commands. Figure 2-3 illustrates a series of commands stored in the
command history buffer.

RigIsketE g
Hew SheiT'grnuss 3
Aepeach> M —— — 0
ednesday 85*&{93 s
3. Norkbenchi¥ fVAIL——
Igec Rvatlable ~ In-Use Haxmun tara:
£ 52

Top of Buffer

- — DATE
L —AVAIL

i 1538740 {4344 289705 197
total 193216@ z%a%%?% 3%’5375 1° s 52 I

ola
%Horit(bgn(NYePHRT Digé(bfld NAE gwg;n (T — FORMAT DEVICE DFO0: :
fsert di 0 ornatted evice . S .
Pr:ss RETBQN ts §egm fomat{?ﬁq or (TRE-C to abert: o NAME EMPTY QUICK :
Initializing disk.. A — —CD DFo:
3&?%"3%«[&?&0;'»1'[e L ‘ :
3.mm5> SRl s e — MAKEDIR Testfile

SENPTY Testfiler § . CD TESTFILE

Figure 2-3. Command History Buffer

Using the Shell 2-7

The exact number of lines retained in the command line buffer varies

depending on the length of the lines actually stored. When the buffer
is full, the oldest lines are removed. You can access lines in the buffer
with the up and down arrow keys:

up arrow Moves backward in the history buffer (earlier lines).
down arrow Moves forward in the history buffer (later lines).

For example, you can copy several .info files from one directory to

another by entering the full command line with the complete path
only once and then recalling the line as many times as necessary,

changing only the file name.

You can also search for the most recent occurrence of a specific
command by entering the command line, or the beginning of it, and
pressing Shift+up arrow (or Ctrl+R). For example, if you enter DIR
and press Shift+up arrow, you are returned to the last command
entered to perform a DIR of any directory. Pressing Shift+down
arrow goes to the bottom of the command history buffer, leaving the
cursor on a blank line.

Copying and Pasting

You can copy and paste information from one console window, such as
a Shell or ED window, to the same or another window. This is the
only Workbench-style mouse operation performed in Shell windows,
except for within the ED and MEmacs text editors. Figure 2-4
illustrates copying and pasting from the Shell window to the ED
window.

2-8 Using the Shell

Drocess 3
hi> cd devs
h:bevs> dir

Highlighted text
(Right Amiga+C
to copy)

he oir{g lsa tst o tles con amym 1y Wo

directory, :
Honiters (dir)

x Datalypes (dir)
DOSDrivers (dir)

Insertion point Erinters‘;du)')
i i eynaps (dir ;

(Right Amiga+V' | \{sbyand.device Datalypes. info

to paste) DOSDr ivers, info Keymaps,info
Kickstart nfn device
Honitors. info. - parailel.device
gstscrcpt_mlt.ps srinter . device

inters. info scala, device

serial device systen-conf iguration

Figure 2-4. Copy and Paste

Use the mouse to highlight the area of text to be copied and pasted.
Highlight the text to be copied by moving the pointer to the beginning
of the text area, holding down the selection button, and dragging the
mouse pointer to the end of the desired text. Release the selection
button and press Right Amiga+C. The highlighted area is copied into
the Clipboard and the area is unhighlighted. The text you copied can

Using the Shell 2-9

be repeatedly pasted into any application window that supports
reading text from the Clipboard, such as the Shell, ED, and MEmacs.

To position the cursor where you want to paste the text, move the
mouse pointer to that location and click. Press right Amiga+V to
paste the text.

Note If a block of text is pasted into a Shell window, the

Shell attempts to execute each line of the text as a
command. This can have unpredictable results if the
block of text has embedded returns and is not an
AmigaDOS script.

Working with the Shell
The following are tips for speeding your work with the Shell.

Use command history and command line editing

It sometimes takes several attempts using the same command
before getting it right, especially when you are first learning how
to use AmigaDOS. Use the arrow keys to recall a previous
command and change only the part of the line that causes the
problem to eliminate the need to retype the entire line.

Use aliases

Defining short aliases for commands you use often is another
time-saver. It also eliminates the need to remember a long and/or
complex series of options. For complete instructions, see the
ALIAS command in Chapter 6.

Omit unnecessary keywords

For clarity, AmigaDOS command names and keywords
throughout this book are often shown although they are optional.
When you learn a command's format, however, you seldom need
to include optional keywords.

2-10 Using the Shell

¢« Do not use capital letters

Command names, keywords, and assigned directories are shown
in all upper case letters throughout this manual even though
AmigaDOS is case-indifferent. This is done to distinguish the
keywords from the file names and other information on the
example command line. There is no need to use capitalization,’
except in commands that create a file or directory whose name
you want to appear capitalized.

¢« Use implied CD

This allows you to leave out the CD command, saving three
keystrokes. Enter the only directory name, path, colon, or slashes
at the prompt to change directories. For more information about
changing directories, see the CD command in Chapter 6.

Chapter 3

Working With AmigaDOS

AmigaDOS stores information in the same hierarchical structure as
Workbench. AmigaDOS commands have specific rules that you must
follow when creating scripts and programs to run on your Amiga.
You must be familiar with the terms specific to the file system and
with AmigaDOS command concepts to successfully use AmigaDOS.
This chapter describes the following:

« Managing files, directories, and disks

+ Command line basics

¢« Types of commands

« Command structure

« Special characters

¢ Running programs

¢ Refining your AmigaDOS environment

Specific commands are fully described in Chapters 6 and 7 of this
manual.

Managing Files, Directories, and
Disks

In order to use AmigaDOS to access information, you must know
where that information is located. On an Amiga, all information is
stored in a system of directories and files. This is the same system
used by the Workbench, only the method of working with it is
different. Most notably, you do not use icons to manipulate the files
and directories. See the Workbench User's Guide for detailed
information about the Amiga file system and the use of common

3-2 Working With AmigaDOS

commands. Use this section to review the following AmigaDOS basic
concepts:

¢ File system terms

« File management

« Naming conventions
¢« Keywords

File System Terms
The following are the main elements of the AmigaDOS file system:

Device A physical device, such as a disk drive or printer, or a
software (logical) device, such as RAM: or the printer
device PRT:.

Partition A hard disk or part of a hard disk that AmigaDOS treats
as a separate device.

Volume A particular disk or subdivision of a hard disk that

AmigaDOS treats as a separate device. Floppy disks
and hard disk partitions are volumes.

Directory Equivalent to a drawer in Workbench.

Root Directory The top of the filing system for a given volume; the
directory that contains all other directories.

Subdirectory A directory that is contained within another directory.

File A named collection of data.

Path The series of device, directory, and subdirectory
names that uniquely specifies a particular file and its
location.

File Management

AmigaDOS stores information on a device in a file system, which is an
organization of directories, subdirectories, and files. Directories and
files are arranged in a hierarchical system often referred to as a tree.
The branches are directories, which can include subdirectories. At
the ends of the branches are the files, unless the directory is empty.
Figure 3-1 illustrates a directory tree.

Working With AmigaDOS 3-3

1

Volume

o0

Directory Directory
File File] D

Q__Q 0
| | Ih . —
File| |File| | File Directory File

Figure 3-1. Example Directory Tree

Devices

Devices include logical devices and the hardware associated with your
Amiga, such as floppy disk drives, hard disk drives, the Ram Disk,
RAD:, and peripheral devices. Information stored on these devices
can be accessed using a variety of names.

To access files on a particular volume, you can refer to the volume by
its volume name, such as Workbench:, or its device name, such as
DFO0:. Use the names interchangeably; however, you must always
include the colon (:) after the name. When you refer to a disk by
volume name, the system searches all the available drives for the
volume. Ifit cannot find a volume of that name, a requester asks you
to insert the volume. When you refer to the disk by a particular
device name, the system uses whatever volume is inserted in that
device.

3-4

Working With AmigaDOS

AmigaDOS has standard names assigned to peripheral devices that
are attached to the various ports, as well as to various logical
(software) devices. Generally, these devices are used for output, such
as copying a file to a printer. The standard device names are:

SYS:

PAR:

SER:

PRT:

CON:

CONSOLE:

NIL:

RAM:

RAD:

DFO:

Represents the volume on which the Amiga looks for its basic
disk-based resources, such as C: and LIBS.:.

Represents any device, usually a printer, that is connected to
the parallel port. If you copy a file to PAR;, it is sent to the
device attached to the parallel port. Output directed here is
not modified by any driver software.

Represents any device connected to the serial pont, such as a
printer or a modem. Output directed here is not modified by
any driver software.

Represents the printer. Output to PRT: goes through the
selected printer driver and to the serial or parallel port as
specified in the Printer editor in the Prefs drawer.

Represents a console, which uses a window to accept typed
input and display text output. The Shell window is one kind of
console window.

Represents the current console window. An asterisk (*) can
also be used in place of CONSOLE:.

Represents a dummy device commonly used to prevent
output from appearing on the screen. All output sent to NIL: is
discarded.

Represents the Ram Disk, which is a portion of the Amiga’s
internal memory that can be used as a storage device. All
information in RAM: is lost if the Amiga is rebooted or turned
off.

Represents a special kind of Ram Disk that is only lost if the
system is turned off, but not when rebooted. Refer to
Appendix C for detailed information.

Represents the Amiga's main internal floppy drive from which
the Amiga attempts to boot if there is no other bootable device
available.

Working With AmigaDOS 3-5

Directories

Directories are the AmigaDOS equivalent to drawers in Workbench.
They allow you to group and classify related files. Each file on a disk
is located in a directory. An empty, formatted disk contains one
directory, the root directory. If you create a file on an empty disk,
that file resides in the root directory. If the file has an icon attached
to it, the icon appears in the disk window.

Directories can contain other directories, called subdirectories. The
Amiga supports an arbitrary number of nested directories (directories
within directories).

Files

A file, the basic unit of storage on a computer, is an organized
collection of information. All the programs and any permanent data
that a program uses or produces are files. Project icons represent
data files. Data files contain the information created or used by a
program, such as text, graphic, or spreadsheet files.

.Info Files

Another type of file used by the Amiga is a .info file (pronounced dot
info file). The .info files contain the icons that appear on the
Workbench screen. Every file or directory that has an icon also has a
corresponding .info file. In addition to storing the graphics and
position data for the icon image, a .info file contains any Default Tool
or Tool Type information entered into the icon's Information window.

When working through the Shell, AmigaDOS does not automatically
associate .info files with the corresponding files or directories. For
example, if you use the COPY command to copy the Clock file from
the Utilities directory to the System directory, the Clock.info file is
not copied with it like it is when you drag the Clock icon from one
drawer to another in Workbench. In AmigaDOS, to be sure the Clock
icon appears in the System drawer, you must also copy the Clock.info
file.

When you change icon images by copying .info files, you need to copy
an icon of the same type as the item it represents: Tool, Project,
Drawer, Disk, or Trashcan. If the icon's type does not match the type

3-6 Working With AmigaDOS

of file it represents, it may not open from the Workbench. Icon type is
displayed in the icon's Information window and can be changed with
the IconEdit program.

Each disk icon has a corresponding disk.info file. If you delete the
disk.info file, a default disk icon automatically replaces the previous
icon.

Naming Conventions
The following naming conventions apply to file and directory names:

o Names can be up to 30 characters long and can contain upper
case letters and any punctuation marks that are not reserved.
Workbench file and drawer names can only be up to 25 characters
long to accommodate a possible .info extension.

« Colons (:) and slashes (/) are reserved and cannot be used in file or
directory names. Semicolons (;), asterisks (*), parentheses (()),
question marks (?), back apostrophes ('), number or pound signs
(#), square brackets ([1), angle brackets (< >), tildes (~), vertical
bars (|), dollar signs ($), double quotation marks ("), and percent
signs (%) are not reserved; however, we recommend that you do
not use these characters in your file or directory names because
they have special meaning in AmigaDOS.

« Capitalization used in file names is preserved even though
AmigaDOS is not case-sensitive. The name is recognized by the
characters; for example, TextFile is treated the same as textfile.

« Spaces in names are allowed, but not recommended when
working through AmigaDOS. If you do use names with spaces,
the entire path containing the name must be enclosed in double
quotation marks. We recommend using an underscore (_) as a
separator rather than a space.

Note If you use spaces in file names, do not place one at the
beginning or end of the name. This space is invisible
when displayed and easily overlooked as part of the file
name. AmigaDOS does not recognize the name if such
a space is not entered.

Working With AmigaDOS 3-7

Note If you use spaces in file names, do not place one at the
beginning or end of the name. This space is invisible
when displayed and easily overlooked as part of the file
name. AmigaDOS does not recognize the name if such
a space is not entered.

Keywords

A keyword is a special word recognized by an AmigaDOS command.
AmigaDOS commands use keywords to identify arguments or to
specify options. If there is a conflict between a name and a command
keyword, enclosing the name in quotation marks ensures that it is
interpreted as a name. For example, if you have a directory named
Files and you want to display information about all of its files and
subdirectories, you might use the command LIST Files. However,
this is ambiguous because LIST has the keyword FILES. To avoid
this, enter:

LIST "Files"

Command Line Basics

Effectively using a Command Line Interface, such as the Amiga Shell,
requires that you understand concepts unique to this method of
working with your computer. These include:

« The distinctions between files, programs, commands, and scripts

o The search path

» The current directory

Files, Programs, Commands, and Scripts

Files, programs, commands, and scripts are named collections of data
that can be stored in the computer's memory or on a disk drive.
These concepts can be confusing because the meanings of the terms
often overlap.

3-8 Working With AmigaDOS

Files

Programs, commands, and scripts are all files. Files can be stored on
disk or in the Amiga's memory, although certain kinds of files are
customarily stored in specific locations.

Programs

A program is a file that the computer executes to accomplish some
task. Software that you buy for the Amiga are mostly programs.
Workbench programs are called tools, utilities, or editors. A file that
is not a program is typically a data file, which contains information a
program can use, such as text or graphics. Programs can be stored
anywhere.

Commands

A command is a type of program. The term command usually refers
to programs that are executed through a command line such as the
Shell, especially those programs that come with a computer as part of
the operating system and perform some basic function. The programs
detailed in Chapter 6 of this book are the AmigaDOS commands.
AmigaDOS commands that are not Internal (built into the Shell) are
stored in the C: directory.

The term command can also refer to a specific instance of that
program's invocation, including its arguments, if any. In this manual,
the term command line is used to indicate a command program's
invocation; for example, "The command line TYPE S:User-startup
is an example of the TYPE command.”" The command must always be
the first thing on the command line.

Scripts

A script is another type of program that is a text file containing a
series of commands comprising the program. You can view and edit a
script with a text editor. A script typically performs some simple task
that can be modified by editing the script.

In this manual, the term script refers to scripts of AmigaDOS
commands. AmigaDOS scripts are customarily stored in the S:

Working With AmigaDOS 3-9

directory. ARexx programs are also called scripts, although they can
be referred to as macros or programs; these scripts are also stored in
the S: directory using the assignment REXX:. Some computer
systems refer to scripts as batch files.

Search Path

When using the Shell, the Amiga must know where to look for the
commands you want to use. The Shell has a search path, which
allows you to enter commands without providing the full path. The
search path is a series of directories that AmigaDOS searches to find
commands that are entered without paths.

The default search path includes the current directory, C:, and
several other directories specified in the standard Startup-sequence.
You can add other directories in which you keep frequently-used
programs by using the PATH command or by using multiple
assignments with the ASSIGN command. There is, however, a
significant difference between these two methods. Directories added
to the search path with the PATH command are local to the Shell in
which you added them and to any sub-Shells launched from that
Shell. Directories added through multiple assignments with the
ASSIGN command are global to the whole system.

When you enter something in the Shell, AmigaDOS looks through the
directories in the search path for a command of that name. It
searches the directories in the order they appear in the path until it
either finds the command or reaches the end of the path list. When a
command cannot be found in any of the search path directories, the
Shell displays an Unknown command message, as illustrated in
Figure 3-2.

3-10 Working With AmigaDOS

1> frob

l

|currentdir] | RAM: | [¢ | [Utiies | | Rexxc |

I

Tools WBStartup Prefs [S: HSystem

frob: Unknown command

Figure 3-2. Search Path

Note AmigaDOS uses the search path to find commands
only. You must include a full path to any files referred
to in a command's arguments.

Current Directory

The current directory is the Shell's current location in the filing
system hierarchy, similar to the Workbench's current window. The
name of the current directory is displayed in the default Shell prompt
so that you always know where you are. The following properties
apply to the current directory:

¢ Each Shell has its own independent current directory.
¢ A Shell has only one current directory.

o The current directory is always the first directory in the search
path.

o The path up to and including the current directory is assumed
and does not need be included in a path to a particular command
that is within the current directory.

¢ The current directory is the default directory, the directory on
which a command operates, if no other directory is specified.

Changing the current directory, like adding directories to the search
path, is a way to reduce the amount of typing necessary to specify a
command. Often you need to perform several operations within a
certain directory, such as copying, renaming, and deleting files. You

Working With AmigaDOS 3-11

can avoid entering the full path for each file by changing the current
directory to that directory in which most of the files are located.

Types of Commands
AmigaDOS has both disk-based and internal commands.

Disk-based commands must be loaded from a disk before execution.
On systems with hard disks, the disk-based commands are always
accessible to the system since they are automatically loaded when
invoked. On a floppy-only system, these commands are read from a
floppy disk that must be inserted whenever they are called.

Internal commands reside in the Shell, which is in ROM (Read Only
Memory). The system accesses internal commands immediately.

Some AmigaDOS commands are essentially the same as menu items
or programs on the Workbench. These commands and the
corresponding Workbench equivalent are shown in the following
table:

Command Function Workbench Counterpart
CD Change the current Select another window/icon
directory
COPY Copy a file, directory, or Copy menu item
disk
DATE Set the correct date and Prets/Time editor
time
DELETE Delete a file or directory Delete menu item
DIR Show files in a directory Show All Files menu item
DISKCOPY Copy a disk Copy menu item
ENDSHELL Close a Shell window Select Shell window close
gadget
FORMAT Format a disk Format Disk menu item
INFO Show information on all Observe disk window title bars

disks

3-12 Working With AmigaDOS
Command Function Workbench Counterpart
(cont'd) (cont'd) (cont'd)
LIST Show files, with sizes, etc. View By Name menu item
MAKEDIR Make a new directory New Drawer menu item
NEWSHELL Open a new Shell window Open Shell icon
RELABEL Rename the disk volume Rename menu item

in the specified drive with

the specified name
RENAME Rename a file or directory Rename menu item
SETCLOCK Save the date and time Prefs/Time editor
TYPE Display the contents of a MultiView program

text file

AmigaDOS Command Structure

Every AmigaDOS command has a specific format and syntax that
must be used for the system to accept and act on the command. The
general rules for working with AmigaDOS commands are few, but

absolute:

» Alegal command or program name must appear first on the
command line. The full path to the command is not necessary if
the command is in a directory on the search path.

o Arguments are separated from the command and from each other
by spaces; a single space is sufficient, but additional spaces are
allowed. No punctuation, other than that specifically needed in
the command, should be used.

* AmigaDOS is not case-sensitive. Any mixture of upper and lower
case can be used on the command line, however, case is ignored.
Capitalization given in file and directory names is preserved.

Working With AmigaDOS 3-13

» Except where noted, when a path or string argument contains a
space, the entire path or string must be enclosed in double
quotation marks ("). For example:

1> ECHO comment TO Adisk:Text/Comment
1> ECHO "A comment" TO "My Disk:Text/Comment"

« The maximum length of a standard Shell command line is 512
characters.

A sample of the structure of an AmigaDOS command line is
illustrated in Figure 3-3. It consists of the COPY command followed
by two arguments.

FROM argument TO argument

command optional keywords option
‘ — names — |

1. Extras:Prefs> COPY FROM ScreenModa ScreenMode.info TO SYS:Prefs CLONE

Prompt Command line
Figure 3-3. Example Command Line

An argument is an additional piece of information the command uses,
such as a file name or option. Command arguments are similar to
icon Tool Types on the Workbench. Depending on the command,
arguments can be optional or required. Figure 3-3 illustrates the
following points about arguments.

o Keywords for AmigaDOS commands are generally full words or
simple abbreviations, in this example, FROM and TO.

e An argument can consist of more than one term; in the example, a
file name argument accepts two names at the same time:
Screenmode and Screenmode.info.

+ Some arguments have an identifying keyword, which can be
optional or required.

e When optional keywords are omitted in a multiple-argument
command, the arguments must appear in the order shown by the
command template.

3-14 Working With AmigaDOS

Special AmigaDOS Characters

There are several characters that have special meanings when used
in AmigaDOS. The functions of special characters include the
following:

« Specifying paths
e Pattern matching
¢ Redirecting command input and output

It is important when using AmigaDOS to remember the various
special functions that characters can have. Note that in different
contexts the same character can have different effects or have no
special effect. If a command that appears correct produces
unexpected results, check to see if any character in the command has
a special function.

Command Line Characters

The colon and slash characters are reserved by AmigaDOS for
specifying paths. In file requesters, on the command line, or in
scripts these characters are used only to separate components on the
path line.

Colon (:)

Colons are used to designate device names (DFO0:), volume names
(Workbench:), and assigned directories (SYS:). There are no spaces
before the colon, unless it is the first character in the path, or
between the colon and subsequent file or directory names in a path.
Used by itself, the colon represents the root directory of the current
volume. The following are examples of legal uses of the colon:

1> DIR DEVS:

1> DIR DFO:Pictures
1> DIR :Prefs

1> DIR :

Working With AmigaDOS 3-15

Slash (/)

Slashes are used within paths to separate directories and file names.
For example:

1> LIST Reports/Salesreps/Eastern

The three directory levels are separated by slashes; this example lists
the Eastern subdirectory.

Entering a single slash moves the current directory structure up one
level. For example, if Reports/Salesreps/Eastern is the current path,
entering the following:

1> CD /

changes the directory path to Reports/Salesreps. Using two slashes
moves up two levels, and so on.

Double quotation mark (")

The double quotation mark by itself does not have any special
meaning. However, you may occasionally need to use double
quotation marks around a command argument for the command to
work properly. Since AmigaDOS uses spaces as an argument
separator, you must enclose an argument (such as path) that contains
spaces in double quotation marks to keep the Shell from interpreting
the parts of the argument as separate arguments. For example, the
following is incorrect:

1> COPY Ram Disk:foo TO SYS:Otherdir

It produces an error message because there is a space in the path.
The command indicates that there are two items to be copied, when
only one is intended. Enclosing the path in quotation marks forces it
to be treated as a single argument:

1> COPY "Ram Disk:foo" TO SYS:Otherdir

Using double quotation marks with nothing between them is a quick
way to reference the current directory. For example:

1> COPY DFO:public.library TO ""
If the current directory is LIBS:, the public.library file is copied there.

3-16 Working With AmigaDOS

Plus (+)

The plus sign, when entered with the RUN command, concatenates
several commands entered on subsequent lines into a single command
line. For further information and examples, see the RUN command
in Chapter 6.

Question mark (?)

One of the special uses of the question mark is to display a
command's template. The template is an online reminder of the
command's arguments. To display a specific command's template,
enter the command name followed by a space and then the question
mark, with no other arguments:

1> TYPE °?
FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S:

The Shell displays the template. It also allows you to enter the
arguments for the command with which you have used the question
mark. Enter arguments for the command after the colon. Be sure to
enter only the arguments and keywords needed before pressing
Return.

Pattern Matching

You can work on several files or directories with one command using
pattern matching. Special wildcard characters are used in command
arguments to match characters in the file names. For example, use a
wildcard character in a single command for copying or renaming all
the files beginning with a specific letter, ending with the same
extension, or residing in the same directory.

Wildcard Characters

The following list shows each wildcard character and the type of
match it makes. In the list, a <p> indicates that either a single or
multiple character string immediately adjacent to the wildcard is
matched. To match a literal wildcard character, you must escape its
wildcard meaning by prefacing it with an apostrophe ('). For
example, '?, matches ?, and '' (two single apostrophes) matches .

Working With AmigaDOS 3-17

? Matches any single character.

#<p> Matches zero or more occurrences of <p>.

<pi>l<p2> Matches if either <p1> or <p2> matches.

~<p> Matches everything but <p>.

(<p1><p2>...) Parentheses group items together.

[<p>-<p>] Square brackets delimit a character range.

% Matches the null string (no characters).

'<p> When <p> is wildcard character, matches that character.

The following examples indicate the matches that can be made using
the entry in the left column.

A?B Matches any three character names beginning with A and
ending with B, such as AcB, AzB, and a3b.

A#BC Matches any name beginning with A, ending with C, and
having any number of Bs in between, such as AC, ABC,
ABBC, ABBBC.

ABC#? Matches any name beginning with ABC, regardless of what
follows, such as ABCD, ABCDEF.info, or ABCXYZ.

#2?2XYZ Matches any name ending in XYZ, regardiess of what
precedes it, such as ABCXYZ and ABCDEFXYZ.

A(BIC)D Matches ABD or ACD.

~ (XYZ) Matches anything but XYZ.

~ (#7XYZ) Matches anything not ending in XYZ.

A#(BC) Matches any name beginning with A followed by any number

of BC combinations, such as ABC, ABCBC, and ABCBCBC.

A(BIDI%)#C Matches ABC, ADC, AC (% is the null string), ABCC, ADCC,
ACCC, and so forth.

[A-D}#? Matches any name beginning with A, B, C, or D.
#2XYZ'? Matches any name ending with XYZ?

3-18 Working With AmigaDOS

The combination of #? matches any characters and is used most often.
#? is equivalent to the * wildcard used by other computer systems.
For example, to delete all the .info files in the Picture directory, enter:

1> DELETE Picture/#?.info

Caution Be careful not to accidentally delete the contents of a
disk when using #?.

Redirection

Redirection can change input or output to a specific file or device
(such as a printer, modem, or logical device). When working in the
Shell, the keyboard is the source of command input and the current
Shell window is the destination for output. You can redirect input
and output using the left angle bracket, right angle bracket, and
asterisk characters.

Angle Brackets

A redirection argument consists of either the < or > symbol followed
by a file name or device name. The angle bracket must be preceded
by a space, but no trailing space is necessary.

For some commands, the redirection characters can replace the
keywords TO and FROM, depending on the command's syntax.

You can only redirect input or output on the command line in which
the redirection characters appear. AmigaDOS applies the default
input and output sources for any subsequent commands without
redirection.

Right Angle Bracket (>)

The right angle bracket redirects the console output of a command to
the destination pointed to by the bracket. The console output is the
text that the command prints in the Shell window when executed.
For example,

1> DIR >Testfile DFO:

Working With AmigaDOS 3-19

sends a directory listing of DFO0: to a file in the current directory
called Testfile. Testfile is created if it does not already exist and it
contains the directory listing as ASCII text. The directory listing is
not displayed on the screen.

Only the console output of a command is redirected, not the data on
which the command works. For example,

1> COPY >Log Picdir TO PicsArchive: ALL

copies all the files in the Picdir directory to the PicsArchive disk,
sending a list of the copied file names to the Log file.

Left Angle Bracket (<)

To change the source of a command's input from the keyboard to a
file, use the < symbol. However, a question mark (?) must also be
used as a separate argument on the command line. The question
mark instructs the command to accept input; it is not a wildcard
character in this context. The following example creates a file and
then uses the contents of the file as the argument for a command:

1> ECHO tomorrow TO Datefile
1> DATE ? <Datefile

The ECHO command creates a file called Datefile containing the
word "tomorrow". The DATE command accepts the contents of
Datefile (the word "tomorrow") as if it were entered at the keyboard.
This sets the system date 24 hours ahead.

Double Right Angle Brackets (>>)

Redirect output and append material to an existing file using two
output symbols (>>) with no spaces between them. For example:

1> Postscript >>Laser/Letter
executes the program Postscript, adding its output to the end of the
Laser/Letter file.
Asterisk (*)

An asterisk refers to the current Shell window. However, to avoid
confusion with other uses of the asterisk, we recommend using
CONSOLE;:, which is the synonym for *. The asterisk can be used as

3-20 Working With AmigaDOS

a FROM or TO argument or as a redirection file name (the source of
input or the output destination).

Pressing Ctrl+\ restores input/output to the default source. For
example:

1> COPY * TO Screenfile
or
1> COPY CONSOLE: TO Screenfile

copies all subsequent text typed in the current window to the file
called Screenfile until you press Ctrl+\.

Ctrl+\ is also used to close a Shell window. Be careful not to press
this key combination twice when you want to end the redirection
since it also closes the Shell window.

Running Programs

Most programs can be run from both the Workbench and the Shell.
To run a program from the Shell, you usually enter the program
name at the Shell prompt. (If the program file is not in the search
path, you must specify the complete path to the file.) This tells
AmigaDOS to load and execute the program.

Most programs allow you to specify additional information on the
command line after the program name, such as the name of a file to
load or startup options. These additional items are its arguments.
Refer to a program's documentation to determine the arguments it
allows and how they should be entered.

For example:
1> MEmacs

loads and runs the MEmacs editor. Adding an argument:
1> MEmacs S:User-startup

loads and runs MEmacs, automatically opening the User-startup file
in the S: directory as the file to begin editing.

1> CLOCK WIDTH 200 HEIGHT 100 SECONDS

Working With AmigaDOS 3-21

loads the Clock with a specified size of 200 pixels by 100 pixels and
the SECONDS option turned on.

Often this argument-passing ability is provided as a convenience,
allowing you to specify directly on the command line what might
otherwise require several menu operations. However, many
programs, especially those that can only be run from a Shell, require
that file names or other arguments be specified on the command line
with the program name.

Running Programs in the Background

Another way to enter a program name is with the RUN command.
RUN loads and runs a program in the background. The Shell prompt
returns after the program is opened.

For example, entering:

1> MEmacs

opens the MEmacs editor, but you cannot enter any additional
commands or close the Shell window until you exit MEmacs.

However, entering:
1> RUN MEmacs

opens the MEmacs editor and returns the Shell prompt so that you
can enter additional commands.

When a program is invoked with RUN, a process number is assigned
to it and a message indicating the new process number is displayed,
such as [CLI 2].

Any output that the program generates appears in the originating
Shell window.

You cannot close the Shell window if any programs launched from
that window are still running. For example, if you open MEmacs
through the Shell, you cannot close the Shell window until you exit
MEmacs. Avoid this by using the NIL: device. See Chapter 8 for an
example.

3-22 Working With AmigaDOS

Refining Your AmigaDOS
Environment

The following tips help you to set up your AmigaDOS environment to
suit your particular needs.

Customize your Shell prompt

Changing the color, for example, of the prompt string with escape
codes makes the prompt easier to distinguish from the rest of the
command line and the output that your commands produce. This
helps you keep track of the process number and current directory
that are normally part of the prompt. For more information on
how to change your Shell prompt, see the PROMPT command in
Chapter 6 and the example in Chapter 8.

Create a logical directory structure and use meaningful
names

Because gaining access to something requires knowing where it
is, you should organize your disks and directories in a logical way,
with names that reflect their contents. However, do not create
directory structures that are heavily nested without good reason.

Avoid using spaces and other special characters in names

Characters with special meaning in AmigaDOS, such as # and ~,
are allowed in names, but can cause problems when used on the
command line. Use a period (.), underscore (_), or capital letters
instead of spaces to separate words in a name: "Anim.file,"
"Anim_file," or "AnimFile" rather than "Anim file."

Name related files consistently

Giving related file names a common extension or sequential
numbering simplifies using pattern matching when processing
files.

Working With AmigaDOS 3-23

« Use assigned names in paths

Assigned names allow you to type a short, easy-to-remember
name rather than a long path. For example, it is quicker to type
ENVARC: than SYS:Prefs/Env-archive. Make your own
assigned names for directories you use often and for deeply nested
directories.

+« Extend the search path

If you have a variety of often-used commands or programs, adding
their directories to the search path with PATH or ASSIGN makes
accessing them easier.

« Experiment

The best way to learn how AmigaDOS works is to experiment.
Provided that you use caution with potentially destructive
commands, such as pattern-matching DELETESs, you can
experiment freely.

Chapter 4

Using the Editors

A text editor or word processing program is necessary for creating or
editing text files and script files. Amiga Workbench software comes
with three text editors. This chapter describes them in the following
order:

« ED
« MEmacs
« EDIT

Each of the Amiga editors can be used separately for editing
AmigaDOS scripts and programs; ED and MEmacs can be used for
creating these files. If you are comfortable with the UNIX Emacs
editor, you may prefer using the MEmacs editor. If you need to edit
files containing binary code or you need to edit files too large to fit
into memory, use EDIT. If you are not familiar with any of the
editors, we recommend that you use the ED editor.

Each editor has the basic functionality of a word processor, however,
none of these editors support style formatting options, such as italics,
page numbering, or different fonts. If you need these features, you
can purchase third party word processing software containing such
features for your Amiga.

ED

ED is a full screen ASCII text editor that uses menus and function
keys to access its features. It is easy to use and is suitable for editing
scripts, startup files, MountLists, and other simple files. Use either a
mouse or the keyboard to perform operations with ED. Although

4-2 ED

ED's menus are preprogrammed, when you are familiar with the
program, you can reconfigure them as needed.

Note ED does not accept files containing binary code. To edit
this type of file, use EDIT or MEmacs.

The bottom line of the ED window is the status line used for
displaying messages, prompts, and commands. Error messages
displayed on the status line remain until you enter another ED
command. Figure 4-1 illustrates the ED window showing the status
line.

é’ WIS L oy

- — Status
N | Line

Figure 4-1. ED Window with Status Line

The format for ED is the following:

ED [FROM] <filename> [SIZE <n>] [WITH <filename>]
[WINDOW <window specification>] [TABS <n>] [WIDTH | COLS
<n>] [HEIGHT | ROWS <n>]

The FROM argument specifies the source file to be edited. This
argument is required, but the FROM keyword is optional.

ED 4-3

The SIZE argument changes the ED buffer size. ED has a default
text buffer size of 40,000 bytes. For example:

1> ED Script SIZE 55000
increases the size of the buffer to 55,000 bytes.

The WITH argument specifies an ED command file that can contain
any sequence of ED extended mode commands. When WITH is
specified, ED executes the commands contained in the command file.
The WITH argument's keyword is required if you use WITH.

The WINDOW argument specifies the console type, such as
RAW:0/0/640/256/EdWindow or CONSOLE:. The WINDOW
argument's keyword is required if you use WINDOW.

TABS sets the tab stop interval, which is the number of spaces to the
right that the cursor moves when you press the Tab key. The default
value for TABS is 3.

The WIDTH and HEIGHT arguments adjust the size of the ED
window by specifying the number of characters to display horizontally
and vertically. By default the ED window is 640 x 200 pixels or
approximately 88 characters wide by 21 lines high.

Starting ED

Start ED from a Shell or with the Workbench Execute Command
menu item. Open ED at the prompt by entering ED and a new or
existing file name, as follows:

1> ED <filename>

where <filename> is the name of an existing file or a new file to be
used for saving your work. If the file name specified cannot be found
in the current directory, ED opens a blank window and displays the
message Creating new file.

4-4 ED

Using ED

All ED commands have key sequences and many are available
through menus. You can enter ED commands in either of the
following ways:

1. By choosing the command's menu item.
2. By typing in the command's key sequence and pressing Return.

In addition, you can use the mouse to perform some commands, such
as those that control cursor movement.

You can work on files in ED with the following two command modes:

Immediate Commands are executed as soon as typed. ED opens in
immediate mode.

Extended Commands are not executed until you press Return or Esc.

Immediate Commands

In immediate mode, ED executes commands right away. Specify an
immediate command by pressing a single key or Ctrl+key
combination or by using the mouse. All immediate commands have
corresponding extended versions.

Immediate commands control the following:

e Cursor movement

e Text scrolling

e Text insertion

e Text deletion

» Repetition of commands

Moving the Cursor in Inmediate Mode

The cursor can be positioned anywhere in text by moving the pointer
to the desired spot and clicking the selection button. To move the
cursor with the keyboard, use the arrow keys, Tab, and Ctrl+key
combinations.

ED 4-5

Note In ED, the Tab key only moves the cursor. It does not
insert Tab characters or spaces in a line.

Move the cursor one position in any direction by pressing the
appropriate arrow key. If the cursor is on the right edge of the
screen, ED scrolls the text to the left to display the rest of the line.
ED scrolls the text vertically one line at a time and horizontally ten
characters at a time. You cannot move the cursor beyond the left
edge of the line. If you try to move the cursor beyond the top or
bottom of the file, ED displays a Top of File or Bottom of File
message.

Additional key combinations that control cursor movement are:

Shift+up arrow Top of the file.

Shift+down arrow Bottom of the file.

Shift+left arrow Left edge of the ED window (regardiess of the margin
setting).

Shift+right arrow End of the current line.

Ctri+] Right edge of current line (if cursor is already there, it
is moved to the left edge).

Ctri+E Start of the first line on the screen (if cursor is already
there, it is moved to the end of the last line on the
screen).

Ctri+T Start of the next word.

Ctrl+R Space following the previous word.

Tab The next tab position (multiple of the TABS value;

3 by default).

If your file has more lines than can fit in the ED window, you can
scroll through the file vertically. Scroll one line at a time by pressing
the up or down cursor key to move in the corresponding direction.
Move the text in jumps by pressing:

Ctrl+D Moves 12 lines down through the file.
Ctri+U Moves 12 lines up through the file.

4-6 ED

These commands do not move the cursor position in the window; they
redraw the text in the window with the new line at the cursor
position.

If something disturbs your screen, such as an alert from another
program appearing in the ED window or message remarks in the
status line, press:

Ctrl+V Refreshes the window display.

Inserting Text in Inmediate Mode

Any characters typed in immediate mode are inserted at the current
cursor position and the cursor is shifted to the right. Any characters
to the right of the cursor are shifted to make room for new text. If the
line is wider than the width of the window, the window scrolls to the
right to show what you are typing. If you move the cursor beyond the
end of the line, ED inserts spaces between the end of the line and any
new characters inserted.

There is maximum limit of 255 characters in a line. If you add more
characters, ED displays a Line Too Long message.

To split the current line at the cursor, press Return. Any text to the
left of the cursor remains on the original line. All text under and to
the right of the cursor moves down onto a new line. Pressing Return
at the end of the line creates a new blank line.

Deleting Text in Immediate Mode

ED has no type over mode. To replace a word or line, you must delete
the existing words and insert new information with the following keys
and key combinations:

Backspace Deletes the character to the left of the cursor.
Del Deletes the character highlighted by the cursor.
Ctrl+O If the cursor is over a space, all spaces up to the next

character are deleted. If the cursor is over a character, all
characters up to the next space are deleted.

Ctrl+Y Deletes all characters from the cursor to the end of the line.

ED 4-7

When text is deleted, any characters remaining on the line shift to the
left and any text beyond the right edge of the screen becomes visible.

Changing Case in Immediate Mode

You can change the case of text by positioning the cursor and pressing
Ctrl+F. If the letter is lower case, it becomes upper case and vice
versa. Ctrl+F does not change non-alphabetic characters or symbols.

After you press Ctrl+F, the cursor moves to the right. You can hold
down Ctrl+F to repeat the command until you change all the letters
on the line.

Extended Commands

In extended mode, commands are displayed on the command line— or
status line— at the bottom of the window. ED does not execute these
commands until you press Return or Esc. If you use Esc to execute
extended commands, ED remains in extended mode. If you use
Return to execute extended commands, ED returns to immediate
mode.

Extended commands manage the following:

o Program control

e Cursor movement

¢ Text modification

« Block control

o Searching and exchanging text

To enter extended mode, press Esc. An asterisk appears as a prompt
in the status line. Extended commands consist of one or two
characters. Multiple extended commands can be typed on a single
command line by separating them with a semicolon. Commands can
be grouped together for ED to repeat automatically. Use Backspace
to correct mistakes.

You can also execute commands through the programmable menu
and function keys. Reconfigure the menus and functions keys by
assigning a command to the key or menu item of your choice as
described on page 4-21.

4-8 ED

Using String Delimiters

In some cases, commands require arguments, such as a number or a
text string. A string argument for an ED command must be enclosed
in a pair of identical delimiter characters. In unambiguous situations
you may omit the trailing delimiter. Valid delimiters include ", /, \, !,
;, +, -, and %. You cannot use the same delimiter character inside
your string. Invalid delimiter characters include letters, numbers,
spaces, semicolons, question marks, brackets, and control characters.

Using a File Requester

You can also ask ED to use a file requester, allowing you to view the
contents of the drives and directories in your system.

To invoke a file requester for a load or save command, you must place
a question mark (?) before the required string argument. Be sure to
include a space before the question mark (for example, sa ?/Text/).
Normally, when a command is followed by a string, ED treats the
string as the file to be loaded or saved and attempts the operation
immediately. However, the question mark indicates that you want to
specify the file through a file requester. You must still specify a
string after the question mark, but the string becomes the text that
appears in the file requester title bar.

ED Menus

ED has two sets of command menu assignments: default and
expanded. The default menu assignments, as illustrated in

Figure 4-2, are set up by the S:Ed-startup file, which is automatically
executed each time you run ED. The S:Ed-startup file is a command
file of ED extended mode commands, without the Escape characters.
You can edit this file to set up custom menus, as described on page
4-21, or define preprogrammed function key assignments with the Set
FN Key menu item.

ED 4-9

... ES(sa

ESCsh

Figure 4-2. Default Menu Assignments

Enabling Expanded Menus

The expanded command menu assignments, as illustrated in

Figure 4-3, can be enabled by renaming or deleting the default S:Ed-
startup file. If ED cannot find a file named S:Ed-startup, it opens
with the expanded set of menus, providing more options.

4-10 ED

§lnseri'File,..
ilrite Block..,

Save fis..,
Save & Exit

Figure 4-3. Expanded Menu Assignments

Rather than deleting your S:Ed-startup file, we recommend that you
rename it as follows:

1.

;e WD

6.

In the Workbench window, go to the Window menu and select
Show All Files.

Double-click on the S drawer icon.
Click on the Ed-startup icon.
Go to the Icons menu and choose Rename.

Delete the name in the Rename requester's New Name text
gadget and enter a new name for Ed-startup.

Select OK.

You can also create your own customized file of startup options.
Avoid including Quit commands in the S:Ed-startup file since they
can cause ED to quit immediately after opening.

The menu items in both the default and expanded menus have the
same function regardless of which set you use. All of the ED
commands are available through the keyboard using extended mode
commands even if they do not appear in any menu.

ED 4-11

The following sections describe the menu items found in the expanded
menus and their corresponding extended and immediate mode
commands. An ellipsis (...) indicates that an argument is required or
that a menu item opens a requester or prompt.

Project Menu
The following are the expanded Project menu items:

New Esc,NW Creates a new file, replacing the existing
file. The message Edits will be
lost-type Y to confirm: is
displayed. Press any key (except Y) to
abort the command.

Open... Esc,O,P... Opens a file. Specify the file by entering the
path to the file as a properly delimited string.
(If slashes appear in the path to a file, do
not use the slash as a delimiter.) The
message Edits will be lost-type Y
to confirm: reminds you that you are
replacing the current file.

Insert File... Esc,|,F... Inserts a file into the current file. ED reads
into memory the specified file at the point
immediately following the current line.

Write Block... Esc,W,B... Writes the currently marked block to a
specified file. ED overwrites any other files
with that name and copies the block to the
file.

Save Esc,S.A Saves the text to the current file, overwriting
the existing text in the file. Use Save As to
save to a different file. SA followed by Q is
equivalent to the X command.

Save As... Esc,S,A... Saves the text to the specified file name.

Save & Exit Esc,X Exits ED, saving the current file to the
designated file name. ED writes the text it
is holding in memory to the file that was
specified when ED was opened and then
terminates.

4-12 ED

About Esc,S,H Shows the current state of the editor. The
screen displays information, such as the
value of tab stops, current margins, block
marks, and the name of the file being
edited.

Quit Esc,Q Exits ED without saving changes. If you
made any changes to the file, ED asks if
you want to quit. If you press Y, ED
terminates immediately without saving the
changes to the file.

Edit Menu
The following are commands used for editing:

Undo Line Esc,U Reverses changes made to the current line.
However, ED cannot undo a line deletion.
Once you have moved from the current line,
the U command cannot undo a change.

Star Block Esc,B,S Identify the beginning and end of a block of

End Block Esc,B,E text. To specify a block of text to be moved,
inserted, or deleted, place the cursor on the
first line that you want in the block and enter
the BS command. Move the cursor to the
last line that you want in the block and enter
the BE command.

You cannot start or finish a block in the
middle of a line.

Show Block Esc,S,.B Redraws the display so the block is at the
top of the screen.
Insert Block Esc,1,B Inserts a copy of the block after the current

line. The block remains defined until you
change the text. Use IB to insert copies of
the block throughout the document.

Delete Block Esc,D,B Deletes a block.

Delete Line Esc,D Deletes the entire line.
Ctrl+B

ED

4-13

Movement Menu

The following commands move the cursor around the screen:

Top Esc, T
Bottom Esc,B
Go To Line... Esc,M...
Next Page Esc,P.D
Ctrl+D
Previous Page Esc,P,U
Ctrl+U

Search Menu

Top of the file; first line of the file is brought
to the top of the window.

Bottom of the file; last line of the file is
brought to the bottom of the window.

Move the cursor to the specified line. Enter
the line number on the status line and press
Return. The line specified is brought to the
top of the window. [f no number is given,
the cursor goes to the top of the window.

Go to next page.

Go to previous page.

The following commands let you search through the file for specific
instances of text. You can substitute one pattern of text with another
(search and replace) and have ED request confirmation of (query)
each replace. If the specified text is not found or there are no more
instances of the text, the message Search failed is displayed.
When using the Find and Replace menu commands, ED prompts for
the text strings. Enter the text without delimiters. When using
extended mode, include delimited strings with the command.

Find... Esc,s...
Find Next

Finds the next occurrence of the specified
string of text. The search starts one
character beyond the current cursor position
and continues forward through the file. If
the string is found, the cursor moves to the
start of the located string. The search is
case-sensitive, unless the Ignore Case
command is used. Find Next repeats the
command.

4-14

ED

Reverse Find...

Reverse Find
Next

Replace...

Global
Replace...

Query-
Replace...

Global Query-
Replace...

Esc,B,F...

Esc,E...

Esc,R,P,
E...

Esc,E,Q...

Esc,R,P,
E.Q...

Searches backwards through the file for the
specified string. This command finds the
last occurrence of the string before the
current cursor position. The search
continues through to the beginning of the
file. Reverse Find Next repeats the
command.

Exchanges one occurrence of text with
another.

In extended mode, enter the strings
enclosed by three delimiters. For example,
to replace the word to with too, enter
*to"too". Specify empty strings by typing
two delimiters with nothing between them. |f
the first string is empty, ED inserts the
second string at the current cursor position.
If the second string is empty, ED searches
for the next occurrence of the first string and
then deletes it. Note that ED ignores
margin settings when exchanging text.

Exchanges all occurrences of text.

Searches for the text to be exchanged and
requests verification by displaying
Exchange?. Enter Y to exchange or
another other key to abort.

Searches for all occurrences of the text to
be exchanged and requests verification for
each. Enter Y to exchange or any other key
to abort.

ED

4-15

Settings Menu

The following commands are used for setting up your ED

environment:

Set FN Key... Esc,S,F...

Show FN Key... Esc,D,F
<key>

Reset Keys Esc,R.K

Right Margin... Esc,S, R...

Left Margin... Esc,S,.L...

Ignore Case Esc,U,C

Case Sensitive Esc,L,C

Set FN Key

Defines the function keys and other
programmable keys. Defining function key
and Ctrl+key commands is similar to
defining menu items. See page 4-15 for
instructions for defining function keys and
an example of the Set FN Key command.

Displays the setting for the function key
specified by <key>. Enter a space and a
key slot number for <key>.

Resets the key definitions to the default.
See page 4-16 for a table of special key
mappings.

Sets the right margin. Use the SR
command followed by a number indicating
the column position.

Sets the left margin. Use the SL command
followed by a number indicating the column
position. The left margin should not be set
beyond the right edge of the screen.

Specifies a case-insensitive search. UC
instructs all subsequent searches not to
make any distinction between upper and
lower case text. To make searches case-
sensitive again, use the LC command.

Specifies a case-sensitive search.

Set FN Key is used to define function keys and other programmable
keys. There are 57 immediate command key slots ranging from 1 to
57. Any slot number can be redefined and any numbers within the
range that do not appear in the special key mappings on page 4-16

are not defined.

4-16 ED

The following is the syntax for the Set FN Key command:

SF <slot number> /command string/

Define Ctrl+key combinations by substituting a caret (*) and the
other character for the slot number.

Example Script

This example script assigns function keys to cursor control
commands. You can also enter these as a series of extended mode
commands. The Top of File, Bottom of File, End of Page, Next Page,
Next Line, and Previous Line commands are assigned to the F1
through F6 keys, respectively. Quotation marks are used as
delimiters.

SF 1"t"
SF 2ubu
SF 3"ep"
SF 4 "pd"
SF Snnn
SF 6"p"

Special Key Mappings

The following table shows the default key definitions used in the
Reset Keys command:

Slot# Key/Key Sequence Function

1-10 F1 through F10 Not defined

11-20 Shift+F1 to Shift+F10 Not defined

21 Shift+left arrow Move to beginning of line
22 Shift+right arrow Move to end of line

23 Shift+up arrow Move to top of document
24 Shift+down arrow Move to bottom of document
25 Del Delete character at cursor
26 Not defined Not defined

27 Ctri+A Insert line

28 Ctrl+B Delete line

29 Ctrl+C Not defined

30 Ctrl+D Move down 12 lines

ED

4-17

Slot# Key/Key Sequence Function

(cont'd) (cont'd) (cont'd)

31 Ctri+E Move to top or bottom of screen

32 Ctrl+F Change case

KX Ctrl+G Repeat last extended command line

34 Ctri+H Delete character left of cursor

35 Ctri+l Move cursor to next tab position

36 Ctri+J Not defined

37 Ctrl+K Not defined

38 Ctri+L Not defined

39 Ctrl+M Return

40 Ctri+N Not defined

41 Ctrl+O Delete word or spaces

42 Ctrl+P Not defined

43 Ctrl+Q Not defined

44 Ctrl+R Move to end of previous word

45 Ctrl+S Not defined

46 Ctrl+T Move to start of next word

47 Ctri+U Move up 12 lines

48 Ctrl+V Redisplay window

49 Ctri+W Not defined

50 Ctri+X Not defined

51 Ctri+Y Delete to end of line

52 Ctrl+Z Not defined

53 Ctri+[Esc (enter extended command mode)

54 Not defined Not defined

55 Ctrl+] Move to end or start of line, depending
on cursor position

56 Not defined Not defined

57 Not defined Not defined

4-18 ED

Command Menu

The following commands are for manipulating files:

Extended Esc,C,M... Enters extended command mode;

Command... equivalent to pressing Ctrl+[or Esc.

Repeat Last Esc,R,E Attempts to repeat the last command.

Run File... Esc,R,F... Loads and executes a command file of
extended mode commands.

ARexx Esc,R,X... Runs the specified ARexx program.

Command...

Redisplay Esc,V,W Redraws the ED window and clears the

status line; equivalent to pressing Ctrl+V.

Other ED Commands

There are also ED commands that do not appear in menus. These
commands are listed here in functional groups. Use them in extended
mode by entering the following key sequences.

Program Control

The following are program control commands:

Extend Margins Esc,E,X Extends the margins for the current line.
Once you enter the EX command, ED
ignores the right margin on the current line.

Status Line Esc,SM... Prints a given string on the status line.
Message
Exit with Query Esc,X,Q Exits ED unless changes were made to the

file. If changes have been made, the
message File has been changed-—
type Y to save and exit: is
displayed. Press any key (except Y) to
abort the exit. XQ is equivalent to clicking
the close gadget on the ED window.

ED

4-19

Cursor Control

The following commands are used for controlling the cursor:

End Page
Previous
Character Left
Character Right
Current End
Current Start
Tab

Word Next
Word Previous

Modifying Text

Esc,E,P
Esc,P
Esc,C,L
Esc,C,R
Esc,C.E
Esc,C,S
Esc,T,B
Esc,W,N
Esc,W,P

End of a page.

Start of the previous line.
One place to the left.

One place to the right.

End of the current line.
Start of the current line.
Next tab position.

Start of the next word.
Space after previous word.

The following commands edit text on the screen:

Insert Before

Insert After

Split
Join

Delete

Delete
Character

Delete Left

Delete Word
End Line

Esc,|

Esc,A

Esc,S
Esc,J

Esc,D
Esc,D,C

Esc,D,L

Esc,D.W
Esc,E,L

Inserts the specified string on the line before
the cursor. Specify a new line's string after
the | command to insert text before the
current line containing the cursor.

Inserts the specified string on the line after
the cursor. This command works in the
same way as |, except that the string is
inserted on a new line beneath the current
cursor position.

Splits the current line at the cursor position.

Joins the next line to the end of the current
line.

Deletes the current line.
Deletes the character under the cursor.

Deletes the character to the left of the
cursor.

Deletes to the end of the current word.
Deletes to the end of the current line.

4-20 ED

Flip Case Esc,F,C Switches the case of the selected letters,
one at a time.
Set Tab Esc,S,T Sets the tab stop. To change the current

setting of tabs, use the ST command
followed by a number.

Next Esc,N Start of the next line.

Repeating Commands in Extended Mode

Pressing Ctrl+G repeats a command line. You can set up and execute
complex sets of editing commands many times.

You can repeat a command a specified number of times by entering
the number before the command. For example:

4 E/rename/copy/
exchanges the next four occurrences of "rename" to "copy".

Use the RP (Repeat) extended command to repeat a command until
ED returns an error, such as reaching the end of the file. For
example:

T;RP E/rename/copy/

moves the cursor to the top of the file, then exchanges all occurrences
of "rename" with "copy". The T command (Top of File) changes all
occurrences of Rename in the whole file. Otherwise, only the
occurrences after the current cursor position are changed.

To execute command groups repeatedly, you can group the commands
together in parentheses. You can also nest command groups. For
example:

RP (F/Workbench/;3A//)

inserts three blank lines (the null string //) after every line containing
Workbench.

To interrupt any sequence of extended commands, press any key
during execution. If an error occurs, ED abandons the command
sequence.

ED 4-21

Customizing ED

You can customize ED with commands that change the menus and
function key setup. These commands can be entered individually
within ED. They can also be saved as a script, such as S:Ed-startup,
or as a file specified using the WITH argument. To execute the file
from within ED, use the Run File (Esc,R,F) extended command. For
information about changing the function keys, see page 4-15.

Set Menu Item Esc,S,| Defines the menu headings and items. There
are 120 menu item slots ranging from 0 to
119. The slot type identifies the contents of
the slot and is a number from O to 4. The 0
slot type must be the last defined slot. Do not
create a menu without items; if you specify a
menu heading, include menu items after it.
See below for the syntax of the Set Menu Item
command and a table of the slot types.

Enable Menu Esc,EM Enables menus. You must follow the Set
Menu ltem commands with EM to enable the
menu commands. See page 4-22 for an
example script using the Enable Menu
command.

Set Menu Item
The following is the syntax for the Set Menu Item command:
SI <slot number> <slot type> /stringl/string2/

The following table shows the slot types and functions used with the
Set Menu Item command:

Type Function String Input

0 End of Menus No arguments

1 Menu Heading String1 = heading name
2 Menu Iltem String1 = item name

String2 = command string

4-22

ED

Type Function String Input

(cont'd) (cont'd) (cont'd)

3 Submenu Heading String1 = heading name
String2 = command string

4 Separator bar No arguments

Example Script

The following is an example script using the Set Menu Item and
Enable Menu commands. Quotation marks are used as the

delimiters.

ST
ST
SI

0n
—H
oo W EREO

ONNEFE NN

"Project"”
"Open ... " "op ? /Open file:/"
"Save ... " "sa"

"Quit! n uqu
" MOVe n

" Top " Ilt!l
"Bottom" "b"

ED 4-23

This script produces the menus illustrated in Figure 4-4:

Figure 4-4. ED Custom Menu Example

Printing From ED

Use the following steps to print a file that is open in the current ED
window:

1. Choose the Save As menu item to display a file requester.
2. Enter prt: in the Drawer field.
3. Select OK.

This prints the file, but does not save it to disk. If you wish to save
the file you must select the Save menu item or Save As and a file
name.

4-24 ED

Quitting ED
You can exit ED in one of the following three ways:
+ Esc,X. This method exits ED and saves the current file to a

designated file name that was specified when ED was opened.

o Esc,X,Q or click on the ED window's close gadget. This method
exits ED if no changes were made to the file. If changes were
made to the file, ED lets you save the changes or exit without
saving.

¢ Esc,Q or select the Quit item in the Project menu. This method
exits ED without saving any changes if you confirm the status
line warning that changes will be lost.

ARexx Support

You can also control ED from ARexx by sending and receiving
commands through ED's ARexx port. Each copy of ED running
concurrently has an individual ARexx port name that must be
specified to handle information for the correct session. The ARexx
port names are assigned as follows:

¢ The first session's port name is Ed

e The second session's is Ed_1

o The third session's is Ed_2 and so on

Many of ED's extended commands can be used from ARexx. By using
ED's RV command in ARexx programs, you can send information

from ED to ARexx. This gives information about the status of ED,
such as the current line number or the name of the file being edited.

The RV command accepts the name of the ARexx stem variable to
store its argument information. For example, in ARexx:

address 'E4d' 'RV /stem/'
assigns values to the following variables:

stem.LEFT Current left margin
stem.RIGHT Current right margin
stem.TABSTOP Current tab stop setting

ED 4-25

stem.LMAX Maximum number of lines visible on screen

stem.WIDTH Width of the screen in characters

stem.X Cursor X position in the ED window (1 is the left
edge)

stem.Y Cursor Y position in the ED window (1 is the top line)

stem.BASE Window base (normally 0, but non-zero when the
screen is shifted to the right)

stem.EXTEND Extended margin value (Extend Margins command)

stem.FORCECASE Case sensitivity flag (Ignore Case = 1, Case
Sensitive = 0)

stem.LINE Current line number in the file (1 is the first line)
stem.FILENAME Name of the file being edited

stem.CURRENT Text of the current line

stem.LASTCMD Last extended command issued
stem.SEARCH Last string searched for

Any valid ARexx symbol can be substituted for "stem." Enclose the
name in proper delimiters. These variables can be treated as
ordinary ARexx stem variables.

ED/ARexx Example Program

The example program, Transpose.ed, illustrates the use of several
extended commands from ARexx. This program transposes two
characters when launched from ED. For example, if a line contains
the string 123 and the cursor is highlighting the 3, Transpose.ed
changes the string to 213.

Enter this program and save it as REXX:Transpose.ed. Then, open
ED and edit an existing file or create a new one. Place the cursor one
character to the right of the ones to be transposed, press Esc, and
enter:

RX /transpose.ed/
The program executes and the characters are transposed if ARexx is

running and everything is entered correctly. The entire file name,
including the extension, must be specified to run the program.

4-26 ED

Sample Program
/*Transpose.ed: An example program to transpose two characters.
/* Given string '123', if cursor is on 3, this macro converts
/* string into '213'.
HOST = address () /* find out which ED session invoked this program
address VALUE HOST /*...and talk to that session
'rv' /CURR/' /* Ask ED to store info in stem variable CURR
/* Obtain two pieces of information:
currpos = CURR.X /* 1. position of cursor on line
currlin = CURR.CURRENT /* 2. contents of current line
if (currpos > 2) then /* Work only on the current line
Currpos = currpos - 1
else do /* Otherwise, report error and exit
‘'sm /Cursor must be at position 2 or further to the right/'
exit 10
end
/* Next the code needs to reverse the CURRPOSth and CURRPOSth-1
/* characters and then replace the current line with the new one.
/* drop CURR. CURR is no longer needed; dropping it saves some
/* memory. */
'd' /* Tell ED to delete current line
currlin = swapch (currpos,currlin) /* Swap the two characters
i Micurrlinil/ /* Insert modified line
do i =1 to currpos /* Place cursor back where it started
‘cr' /* ED's ‘cursor right' command
end
exit /* Program has finished
/* Function to swap two characters
swapch: procedure
parse arg cpos,clin
ch1 = substr(clin,cpos,1) /* Get character
clin = delstr(clin,cpos, 1) /* Delete it from string
clin = insert(ch1,clin,cpos-2,1) /* Insert to create transposition
return clin /* Return modified string

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/

i
*/

*/
*/
*/
*/

MEmacs 4-27

MEmacs

MEmacs (MicroEmacs), which is similar to the UNIX-based Emacs
editor, is a screen-oriented editor in which you can edit multiple files
at the same time. MEmacs performs all operations on
memory-resident text, requiring that entire text files be able to fit
into memory at once.

Line length, generally 80 characters long, is limited to the right edge
of the screen. You can enter characters beyond the limit, however,
they are not displayed. To see these characters, break the line or
delete some of the displayed characters. A dollar sign ($) at the right
edge of the screen indicates that there are characters beyond what is
displayed.

The format for the MEmacs command is the following:
MEMACS [<filename>] [GOTO <n>] [OPT W]
The <filename> argument is optional.

The GOTO <n> option specifies the line on which the cursor is to
appear when the file is opened.

Specifying OPT W opens MEmacs in a Workbench window rather
than on its own screen, which saves memory.

Starting MEmacs

MEmacs can be run from either the Workbench or the Shell. From
the Workbench, double-click on the MEmacs icon in the Tools window
of the Extras disk. If you have a hard disk, the Tools drawer is in
your Workbench window.

From the Shell, enter:
MEmacs <filename>

where <filename> specifies the file to read into MEmacs. If a file
with that name does not previously exist, a new file is created when
you save your work.

4-28 MEmacs

MEmacs Commands

The line at the bottom of the MEmacs screen identifies either the
current file name or the name of the current buffer if no file name is
specified. Figure 4-5 illustrates the MEmacs opening screen.

_

== WicroEMACS -~ main —------ R s
[New file]

Figure 4-5. MEmacs Opening Screen

Several buffers can be in use at the same time and one or more can be
displayed on the screen simultaneously. Menu options switch

between them. At all times, the screen displays what is actually in
the buffer.

MEmacs has two conditions of operation:

Normal When you enter and manipulate text directly in the file without
special functions.

Command When you enter a command through a menu selection or the
keyboard shortcut for it. In the command condition, the cursor
jumps to the bottom line of the display and waits for you to
supply additional information following the prompt. You
cannot return to the normal condition until you satisfy or
cancel the command by pressing Return.

MEmacs 4-29

In the MEmacs normal condition, you can:

e Move the cursor using the arrow keys.

o Move the cursor to the edge of the window by holding down Shift
and pressing the appropriate arrow key.

« Move the cursor by clicking the left mouse button at the desired
place on the screen.

« Insert characters at the current cursor position by typing them.

o Delete the character at the current cursor position by pressing
Del.

o Delete the character to the left of the cursor by pressing
Backspace.

o Perform other special menu and command functions.

When using MEmacs, you should be familiar with the following
special terms:

Buffer A memory area that MEmacs controls. There is always at least
one buffer used by MEmacs containing zero or more text
characters.

Dot The current cursor position.

Mark A specified cursor position. (Each buffer has its own dot and

mark.) The Set-mark menu item marks the current cursor
position (described on page 4-33). You can move forward or
backward in the file, adding or deleting text. To return to the
marked place, select the Swap-dot&mark menu item (described
on page 4-36).

You can also set a mark to indicate the beginning of a block of
text that you want to duplicate, move, or delete. The block
encompasses all the characters starting with the mark and
continuing to the current cursor position.

Kill Kill commands remove text from the screen to save in a kill
buffer. This text can be retrieved and inserted into your
document by using the Yank command. Issuing successive Kill
commands (without selecting Yank in between) adds each
block of text to the existing text in the kill buffer. If you select
Yank, the next block of killed text overwrites the current block.

Window MEmacs screens can be split into multiple layers for editing
and displaying more than one buffer or two or more portions of
the same bufter. Each layer is a MEmacs window.

4-30 MEmacs

Modified Buffers are marked as modified when any changes are made.
Buffers The modified status is removed when the buffer is saved.

To see modified buffers, use the List-buffers command
(described on page 4-33); modified buffers are identified with
an asterisk (*). If you exit MEmacs without saving any
changes, a prompt tells you that modified buffers exist and
asks if you really want to quit.

Menu Commands

MEmacs has the following menus:

Project Contains system and file-oriented items.

Edit Contains buffer editing commands.

Window Controls the characteristics of the MEmacs windows.
Move Controls the placement of the cursor.

Line Controls line-oriented operations.

Word Controls word-oriented operations.

Search Controls search and search/replace options.

Extras Controls the numerical value of arguments and lets you

execute a series of operations as though it were a single
special command.

MEmacs

4-31

Figure 4-6 illustrates the MEmacs expanded menu bar.

Window

{Project I

[Renane AXF
Read-file AXAR
Visit-file AXM
Insert-file AXA]

i AXAS
AXM

AXM
I\xAr

Ao

Cli-command ~X!
Quit A

Hove Line Hord

Search Extras

-~ NicroEMACS ~- main
[New file]

Figure 4-6. MEmacs Expanded Menus

Project Menu

The commands in the Project menu, except for Visit-file, affect the
buffer associated with the current cursor position.

Rename Ctrl+X,F

Read-file Ctrl+X,
Ctrl+R

Visit-file Ctrl+X,
Ctrl+V

Changes the name of the file associated
with the current buffer. Pressing Return
without specifying a file name disassociates
the buffer from any file name.

Replaces the contents of the current buffer
with the contents of a file. Enter a complete
file path. Press Return without specifying a
file name to ignore the request and return to
normal mode.

Allows you to work with additional files other
than the one you are currently editing.
Enter the complete file path.

4-32

MEmacs

Insert-file

Save-file

Save-as-file

Save-mod

Save-exit

New-Cli

Cli-Command

Quit

About...

Ctri+X,
Ctrl+l

Ctrl+X,
Ctrl+S

Ctrl+X,
Ctri+W

Ctri+X,
Ctri+M
Ctrl+X,
Ctrl+F
Ctri+-

Ctri+X,!

Ctri+C

Inserts the contents of a file into the current
buffer at a point one line above the current
cursor position. Enter the complete file
path.

Writes the contents of the current buffer to
the file name associated with that buffer.
Issues the file's line count following a
successful save. MEmacs does not save
the file if no name is provided; it displays
this error message: No file name.

Allows you to specify the name and path of
a file associated with a buffer.

Writes the contents of all modified buffers to
the disk. Do not accidentally modify a buffer
that you did not intend to change.

Saves all modified buffers and exits
MEmacs.

Opens a new Shell window known as a
Spawn Window. Enter AmigaDOS
commands in the Spawn Window without
interfering with MEmacs. Close the window
with ENDSHELL.

Lets you execute an AmigaDOS command
while in MEmacs. Enter a command
following the ! prompt at the bottom of the
screen. Command output is placed in the
spawn.output buffer.

Exits MEmacs. You are given an
opportunity to save modified buffers or quit
without saving. Alternative keyboard
shortcuts: Ctrl+X,Ctrl+C Esc,Ctrl+C.

Gives program copyright information.

MEmacs 4-33

Edit Menu

The commands in the Edit menu affect the editing of your buffers and
their associated files.

Kill-region Ctri+W Deletes blocks of text from the current
buffer and saves them in a kill buffer. Text
can be retrieved with the Yank command.
Make copies of a block by immediately
selecting Yank without changing the cursor
position after killing the block. This restores
the block to its position and leaves a copy in
the kill buffer.

Yank Ctrl+Y Copies the contents of the kill buffer to the
current cursor location on the current line.
Reverses the action of Kill-region without
changing the contents of the kill buffer.
Used with Kill-region for moving text or for
repeatedly copying a single block of text.

Set-mark Ctrl+@ Marks the cursor position in a buffer. The
subsequent cursor position is referred to as
a dot. Move between the mark and the dot
using the Swap-dot&mark command in the
Move menu. Used for marking blocks of
text. Alternative keyboard shortcut: Esc,-.

Copy-region Esc,W Copies the contents of the marked region to
the kill buffer without deleting it, replacing
any previous contents.

Upper-region Ctri+X, Changes the text of the entire marked
Ctrl+U region to upper case.

Lower-region Ctrl+X, Changes the text of the entire marked
Ctri+L region to lower case.

List-buffers Ctri+X, Splits the current buffer's window and

Ctrl+B displays a list of the buffers MEmacs is
maintaining. To redisplay the current buffer,
select the One-window command or press
Ctrl+X,1. The List-Buffer fields are:

C Displays an asterisk if the buffer
has been modified since it was
last saved to a file. (Stands for
changed.)

4-34

MEmacs

Select-buffer

Insert-buffer

Kill-buffer

Justify-buffer

Redisplay
Quote-char

Indent

Ctrl+X,B

Esc,
Ctrl+Y

Ctri+X,K

Ctri+X,J

Ctri+L
Ctrl+Q

Ctri+J

Size Shows how many characters are
in the buffer.

Buffer Shows the name given to the
buffer. If you read in a file, this is
the name of the file without the full
path.

File Shows the full path to the file.
This is the file to which MEmacs
writes the buffer if you Save-file or
Save-exit while the cursor is in
that buffer.

Allows you to select the buffer to edit in the
current window. Replaces the contents of
the window with the selected buffer or new
buffer.

Inserts the contents of a named buffer into
the current buffer at the line above the
current cursor position.

Deletes the contents of one or more chosen
buffers, returning the memory to the
memory manager to reuse. You must
specify the buffer to be deleted; a buffer
cannot be killed if its contents are currently
displayed.

Removes all blank spaces and tabs from
the left edge of all the lines in the current
buffer. The text realigns with the current
margins.

Redraws the screen.

Allows insertion of any literal character in
the text file, except the Tab key. Alternative
keyboard shortcut: Ctrl+X,Q.

Moves the cursor to the next line,
automatically indenting the same amount of
spaces as the previous line. Alternative
keyboard shortcuts: Help or Enter on the
numeric keypad.

MEmacs 4-35

Transpose Ctri+T Swaps the positions of two adjacent
characters. Place the cursor on the right-
most of the two characters and execute the
command.

Cancel Ctrl+G Ends an ongoing menu command, such as
query search and replace.

Window Menu

The Window menu controls how to view your buffers on the screen.

One-window Ctrl+X,1 Makes the current buffer a single, full-sized
window on the MEmacs screen.
Split-window Ctrl+X,2 Splits the current window in half, positioning

the current buffer identically in both
windows. Any changes you make in either
window affect the whole buffer.

Next-window Ctrl+X,N Moves the cursor to the next window and
makes that window available for editing.

Prev-window Ctrl+X,P Moves the cursor to the previous window
and makes that window available for editing.

Expand-window Ctrl+X,Z Adds a line to the height of the current
window and simultaneously subtracts a line
from the height of the adjacent window.

Shrink-window Ctrl+X, Subtracts a line from the height of the
Ctrl+Z current window and adds a line to the height
of the adjacent window.

Next-w-page Esc, Displays the next page of the adjacent
Ctrl+V window. This does not make the window
available for editing.

Prev-w-page Ctrl+X,V Displays the previous page of the adjacent
window. [f only one window is displayed, it
displays the previous page of that window.

Move Menu
These commands move the cursor rapidly through the current buffer.

Top-of-buffer Esc,< Moves the cursor to the top line of the
current buffer.

4-36

MEmacs

End-of-buffer
Top-of-window
End-of-window

Goto-line

Swap-dot&mark

Next-page
Prev-page

Next-word

Previous-word

Scroll-up
Scroll-down

Line Menu

Esc,>

Esc,,

Esc,.

Ctrl+X,
Ctrl+G

Ctri+X,
Ctrl+X

Ctrl+V

Esc,V

Esc,F

Esc,B

Ctrl+Z
Esc,Z

Moves the cursor to the bottom line of the
current buffer.

Moves the cursor to the top of the current
window.

Moves the cursor to the bottom of the
current window.

Moves the cursor to a specified line number.
Specifying a line number larger than the
total number of lines in a buffer moves the
cursor to the last line of the buffer.

Marks the current cursor position (dot) and
moves the cursor to the previously marked
setting.

Moves the cursor toward the end of the
buffer by one full window, less one line.

Moves the cursor towards the beginning of
the buffer by one full window, less one line.

Moves the cursor forward to the next non-
alphabetic character, such as a space or
punctuation mark, following the current
word.

Moves the cursor back to the first letter of
the previous word.

Moves the text up one line.
Moves the text down one line.

These commands move the cursor within or between lines and
perform operations involving entire lines.

Open-line

Kill-line

Ctrl+O

Ctri+X,
Ctrl+D

Splits the line containing the cursor, forcing
the character at the current cursor position
to become the first character of the following
line. The cursor remains on the original

line. Pressing the Del key cancels an
accidental Open-line.

Deletes the line containing the cursor and
places the text in the kill buffer.

MEmacs 4-37

Kill-to-eol Ctri+K Deletes the text between the current cursor
position and the end of the line and places
the text in the kill buffer.

Start-of-line Ctrl+A Moves the cursor to the first position on a
line.

End-of-line Ctrl+E Moves the cursor to the last position on a
line.

Next-line Ctrl+N Moves the cursor down one line.

Previous-line Ctrl+P Moves the cursor up one line.

Line-to-top Esc,! Moves the line containing the cursor to the
top of the window.

Delete-blanks Ctrl+X, Deletes blank lines, proceeding forward

Ctrl+O from the current cursor position until

MEmacs reaches the next line on which
there is text. Does not delete single blank
lines.

Show-Line# Ctrl+X,= Displays information on the present cursor
position.

Word Menu

The Word menu contains word-associated operations.

Delete-forw

Delete-back

Upper-word

Lower-word

Esc,D

Esc,H

Esc,U

Esc,L

Deletes the character on which the cursor is
positioned and all remaining characters to
the right until the next non-alphanumeric
character is found, such as a blank space,
tab, or punctuation.

Deletes all characters to the left of the
cursor until it finds the first character of a
word. The character at the cursor position
is not deleted. Alternative keyboard
shortcut: Esc,Del.

Changes a word to upper case, starting at
the cursor position and proceeding to the
last character of the word.

Changes a word to lower case, starting at
the cursor position and proceeding to the
last character of the word.

4-38

MEmacs

Cap-word Esc,C

Switch-case Esc,”

Search Menu

Changes the character at the cursor
position to upper case. Also changes the
characters to the right of the cursor, up to
the end of the word, to lower case.

Changes the case of a word, starting at the
current cursor position and proceeding to
the right until it reaches the end of the word.
If a word is upper case or has mixed text, it
changes upper to lower case and vice
versa.

These commands search through the current buffer for specific text
strings. The case (upper or lower) of the string is not significant in
the search. However, if you are using text substitution (search and
replace), the text is replaced in the case of the replacement string.

Search-forward Ctrl+S

Search-backward Ctrl+R

Search-replace Esc,R

Query-s-r Esc,Q
Fence-match Esc,
Ctrl+F

Searches through the text starting at the
current cursor position and moving forward
to the end of the buffer. At the prompt,
enter the character string for the search.
Alternative keyboard shortcut: Ctri+X,S.

Seaches through the text from the current
cursor position backwards to the beginning
of the buffer. Alternative keyboard shortcut:
Ctrl+X,R.

Searches the same as Search-forward,
allowing you to replace the string with
different text. At the prompt, enter the
replacement string of characters.

Operates the same as Search-replace,
except it asks for confirmation to replace
each time it finds the specified string. The
options are Y (yes), N (no), C (change all
occurrences), and Ctrl+G (abort).

Finds the closest occurrence of the fence
character to match the one at the current
cursor position. Fence characters are
parenthesis, brackets, braces, and angle
brackets.

MEmacs 4-39

Extras Menu

These commands are MEmacs operational commands and macro
commands. Specific numeric arguments may be required before
selecting a command; an * indicates that an argument is required.
Macro commands are executed by selecting the Execute-macro menu
item.

Set-arg Ctri+U Lets you specify a numeric argument for a
command.

Set Esc,S Lets you set the following MEmacs
parameters:

Screen Places the MEmacs display in a
Workbench window or back onto
a custom screen.

Interlace Turns the interlace mode on or
off.

Mode Results in a second prompt
"Mode:"; you can enter Cmode
(for editing C programs) or Wrap
(to enable automatic word-wrap
when the text reaches a set
cursor position). Cmode
provides automatic fence
matching. Use +mode or -mode
to add or subtract a mode.

Left Determines the left margin.
Prompts for a numerical
argument if not provided with the
entry.

Right Determines the right margin.
Prompts for a numerical
argument if not provided with the
entry.

Tab Sets the increment for tab
spacing. Prompts for a
numerical argument if not
provided with the entry.

4-40

MEmacs

Start-macro

Stop-macro
Execute-macro

Set-key

Reset-keys

Execute-file

Ctrl+X,(

Ctrl+X,)
Ctrl+X,E

Ctri+X,
Ctrl+K

Esc,K

Esc,E

Indent Determines how far to indent
each level of nesting (used in
Cmode). Prompts for a
numerical argument if not
provided with the entry.

Case Turns case-sensitive searches
on or off; default is off.

Backup Turns the MEmacs backup
function on or off. Your options
are: ON (renames the current file
<filename>.bak and saves that
backup file to the T: directory);
SAFE (this option checks to see
if a file already exists for the
buffer — if so, it displays an error
and does not overwrite the
existing file, Ctrl+X clears the
display); and OFF (this is the
default option — MEmacs does
not perform any backup).

Tells MEmacs to start recording any
subsequent keystrokes. Used with the Stop-
macro and Execute-macro commands.

Tells MEmacs to stop recording keystrokes.

Repeats keystrokes that were entered
between Start-macro and Stop-macro.

Allows you to redefine all of the function
keys, the Shifted function keys, the Help key,
or any key on the numeric keypad as
keyboard macros. You cannot use the menu
shortcut of Ctrl+ @ to insert the Set-mark
command into any keyboard macro
definitions.

Returns any keys defined by Set-keys to their
original default state.

Allows you to execute a program file within
MEmacs.

MEmacs

4-41

Execute-line Ctrl+[,

Ctrl+[

Sets MEmacs to command mode. At the
prompt enter any menu command and its

parameters. Alternate keyboard shortcut:

Esc,Esc.

The following table contains the default values of the Set-key/function

keys when used in macro commands.

Key Assignment Key Sequence
F1 Clone line Ctrl+A,Ctrl+K,Ctrl+Y,Ctrl+M,Ctrl+Y
F2 Delete line Ctrl+X,Ctrl+D
F3 Execute keyboard Ctrl+X,E
macro
F4 Next screen Ctrl+V
F5 Previous screen Esc,V
F6 Split window Ctrl+X,2
F7 One window Ctrl+X,1
F8 Scroll window up Ctrl+2Z
F9 Scroll window down Esc,Z
F10 Save file and exit Ctrl+X,Ctrl+F
Help Insert line Ctri+J
Enter (keypad) Insert line Ctrl+J

Commands Not in Menus

The following commands are only accessible through the keyboard.

Keys are bound when they can be used to perform a function. For
example, any key or key sequence that can be used as a shortcut for a
menu item is bound to that menu item.

Tells you if any functions are bound to a key
or key sequence. At the prompt enter the

specific key or key sequence.

Describe Key Esc,
Ctrl+D

Bind Key Esc,
Ctrl+B

Allows you to bind a key to a function. At
the prompt, enter the key or key sequence.

4-42 MEmacs

Unbind Key Esc, Allows you to return a bound key to an
Ctri+U unbound state. At the prompt, enter the key
or key sequence. Standard bound keys
cannot be unbound.

Echo Esc, Displays the string entered in the command
Ctrl+E line.

Move to Edge of Shift+ Moves the cursor to the top, bottom, left, or

Window Arrow right edge of the screen.

Delete the Next Ctri+D Deletes the character at the current

Character position. Same as pressing Del.

Delete the Ctrl+H Deletes the character to the left of the

Previous current cursor position. Same as pressing

Character Backspace.

Move to Next Line Ctrl+M Inserts a newline character after the current

cursor position and moves the cursor to the
start of the new line.

Move x number of Ctrl+F, Allows you to move the cursor forward or

Charcters Ctrl+B backward a specified number of spaces.
Providing no value moves the cursor only
one character.

Customizing MEmacs

MEmacs looks for an Emacs_pro file when it is opened to see if there
are any commands or local files that it should automatically execute.
You can customize the Emacs_pro file by adding commands to it that
you use often, command sequences, or text strings. If an Emacs_pro
file does not already exist, you can create one.

To create a global file of commands, place the Emacs_pro file in the S:
directory. Local files can be put in any directory. If that directory is
the current directory when MEmacs is opened, the commands in that
particular local file are executed.

When both local and global Emacs_pro files are present, the local file
overrides the global file.

For example:

Set Case On
Set-Key F1ll "Dear Sirs:"

EDIT 4-43

Set-Key F1l2 "~S Workbench"
Set-Key F13 "~X"B"

makes the following assignments:

Shift+F1 Enter the text string "Dear Sirs:".

Shift+F2 Search forward for the next occurrence of the word
Workbench. (The Set Case On commands make any
text searches case-sensitive.)

Shift+F3 Display the list of buffers.

You must use Ctrl+Q to enter a Ctrl+key sequence. For example, to
enter the *S character shown in the example, press Ctrl+Q, Ctrl+S.

Quitting MEmacs

You can exit MEmacs by selecting the Quit menu item in the Project
menu or by entering Ctrl+C. MEmacs lets you save any modified
buffers or quit without saving.

EDIT

EDIT is a line editor designed for the automated editing of files,
particularly binary files or files that are larger than available
memory. You cannot create a new file with EDIT.

EDIT processes files line by line. As EDIT moves through the input,
or source file, each line is passed after alteration to a sequential
output file, the destination file.

EDIT processes the lines in files in a forward direction; however, you
can move backward a limited number of lines. EDIT holds the lines
in an output queue before writing them to the destination file. The
size of this queue depends on the amount of memory available. You
can increase the size of the queue with the OPT P and OPT W
options.

4-44 EDIT

The format for EDIT is the following:

EDIT [FROM] <«filename> [[TO] <filename>] (WITH <filename>]
[VER <filename>] [OPT P <lines> | W <chars> |
P<«lines>W<chars>] [WIDTH <chars>] [PREVIOUS «<lines>]

The FROM argument specifies the source file to be edited. You must
specify a source file with EDIT, although the FROM keyword is
optional.

The TO argument specifies the destination file to which EDIT sends
its output, including editing changes. If you omit the TO argument,
EDIT uses a temporary file. This temporary file is renamed with the
name of the FROM file and overwrites the FROM file when editing is
complete.

The WITH keyword specifies a file containing editing commands.

The VER keyword specifies the file to which EDIT sends error
messages and line verifications. If the VER argument is not given,
EDIT uses the screen.

Use OPT P <n> and OPT W <n> to specify the PREVIOUS and
WIDTH options. However, do not use the OPT keyword with
PREVIOUS and WIDTH.

You can use the PREVIOUS and WIDTH options to increase or
decrease the amount of available memory. The PREVIOUS option
sets the number of previous lines available to EDIT to the integer
<n>. The WIDTH option sets the maximum number of characters
allowed on a line to <n>. EDIT multiplies the number of previous
lines by the maximum number of characters (PREVIOUS * WIDTH)
to determine the available memory. The default values are
PREVIOUS 40 WIDTH 120.

Starting EDIT
Start EDIT through a Shell using the following command:

1.> EDIT <filename>

Where <filename> is the name of an existing file to be edited.

EDIT 4-45

EDIT Commands

The following list provides background information about EDIT
commands:

Current line Refers to the line that EDIT is working on at any time.
Every command entered refers to the current line, all
text changes are made to the current line, and new
lines are inserted before the current line.

Original lines The lines of the source file. Lines retain their original
number until you renumber them with the REWIND or =
commands.

Non-original lines Any lines that are inserted into the source file or
original lines that are split. These are not assigned line
numbers.

Line verification When using commands that change information in a
line, EDIT displays the revised line after the command
is executed.

Arguments Strings, qualified strings, numbers, and switch values
used with EDIT commands.

Enter commands in one of the following three ways:

« Enter the commands, then press Return
« Enter the final command argument, then press Return
« Enter a semicolon or closing parenthesis

The text conventions used in the command descriptions are the
following:

« Command names are shown in upper case, although EDIT is not
case-sensitive.

o Angle brackets indicate that information must be substituted.
For example, <string> indicates that the command takes a string
argument.

« An <n> represents a numeric argument.

o Square brackets indicate that the argument is optional. For
example, [<n>] indicates that the command can take an optional
numeric argument.

4-46

EDIT

+ Slashes are used as delimiters for strings; use one slash between

two strings.

e Periods are used as delimiters for file names (slashes cannot be
used since they are used to separate strings).

Selecting the Current Line

The following commands let you move through the file and select the

current line.

Move to a specific M <n>
line number

Move to next line N
In the source file

Move to the P
previous line in
the source file

Find F<string>

Search Backward B,F<string>

Specify a new current line by entering
its line number, a period, and an
asterisk as M's argument. Only original
lines can be accessed by line number.

Move forward one line. Entering a
number and N indicates the number of
lines to move forward. When used as
the last line of the source file, EDIT
creates an extra line at the end of the
file. If you are already on this extra
line, using N causes an error message
to be displayed.

Moves back one line. Entering P
repeatedly moves more than one line.
Entering a number + P indicates how
many lines to move back. You can only
move back to previous lines that have
not yet been written to the destination
file. The default is 40 lines, which can
be changed with the PREVIOUS option.

Lets you select a current line by
specifying some of its content.

Looks backward starting from the
current line through the source file for a
line containing the specified string.

EDIT

4-47

Editing the Current Line

The following commands add new material or replace material on the

current line.
Insert <string2> A <string1>
after <string1> <string2>

Insert <string2> B <string2>
before <string1> <string1>

Exchange E <string2>
<string2> for <string1>
<string1>

Inserting and Deleting Lines

Inserts <string2> after the first
occurrence of <string1>.

Inserts <string2> before the first
occurrence of <string1>.

Replaces the first occurrence of
<string1> with <string2>.

The following commands insert new material (non-original lines) and
delete lines from the source file. You can also insert complete files

into the source file.

Insert one or more | [<n>]
lines

Delete one or more D [<n>]
lines

Delete all lines D,F<string>
until the specified
string is found

If given alone or with a line number,
inserts text before the current line.

If given with an asterisk, the text is
inserted at the end of the file.

Indicate the end of the insertion by
pressing Return, Z, and Return.

Deletes the current line if entered with
no arguments. Deletes a specific line if
entered with a line number. Deletes a
set of lines if entered with a range of
line numbers; do not use punctuation
between the numbers. Deletes
everything from the current line through
the end of the source file if entered with
a period and an asterisk as arguments.

Deletes successive lines from the
source file until the line containing the
matching string is found. If no
argument is specified, it deletes all lines
until it finds the last string specified.

4-48 EDIT

Delete existing R [<n>] Lets you delete lines and then insert

lines and replace new ones. Entering a line number

with new text following R indicates a specific line to
replace.

Change the Z <string> Tells EDIT that it has reached the end

terminator of any new text that is being inserted.
Entering a string after Z changes it from
the default.

Show current S,H,D Displays saved information values,

information about such as the last string searched for, the

EDIT last command entered, and the input
terminator.

Turn trailing T,R, +I- Preserves any blanks that fall at the

spaces on/off end of lines.

Editing Line Windows

You can define subsections of the line, called line windows, on which
EDIT executes all subsequent commands. In the descriptions of EDIT
qualifiers, the beginning of the line always indicates the beginning of
the line window.

Whenever EDIT verifies a current line, it indicates the position of the
line window by displaying a > character directly beneath the line.
EDIT omits the pointer if the line window begins at the start of the
line.

The following commands control the position of the character pointer:

Moves the pointer one character to the right.
Moves the pointer one character to the left.
PR Resets the pointer to the start of the line.

PA <string> Moves the pointer to the first character after the
specified string.

<string> Moves the pointer to the first character before the
specified string.

EDIT

4-49

The following commands change the character at the current pointer,
then move the pointer:

$

%

Makes the character at the pointer lower case, then moves the
pointer one character to the right.

Makes the character at the pointer upper case, then moves the
pointer one character to the right.

The _ (underscore) command deletes the character at the
pointer, turning it into a space, then moves the pointer one
character to the right.

Deletes the character at the pointer, then moves the rest of the
line one character to the left. To delete several characters,
specify a number before the #. For example, 5# deletes the
next five characters in the window.

A combination of these commands can be used to edit a line character
by character.

The following commands insert and exchange text on the current line,
similar to the A, B, and E commands; however, the character pointer

is moved on completion.

Insert <string2> AP Inserts <string2> after the first
after <string1> <string1> occurrence of <string1>. The pointer is
<string2> then positioned after <string2>.
Insert <string2> B,P Inserts <string2> before the first
before <string1> <string1> occurrence of <string1>. The pointer is
<string2> then positioned after <string2>.
Exchange E.P, Replaces the first occurrence of
<string1> with <string1> <string1> with <string2>. The pointer is
<string2> <string2> then pdsitioned after <string2>.
Delete Till After D,T,A Deletes all text from the beginning of
<string> the line or the character pointer to the
end of the specified string.
Delete Till Before D,T,B Deletes all text from the beginning of
<string> the line or the character pointer; stops
before the specified string.
Delete From After D,FA Deletes all text starting after a specified
<string> string to the end of the line.
Delete From D,F.B Deletes all text starting with the
Before <string> specified string to the end of the line.

4-50 EDIT

Splitting and Joining Lines

These commands split a line into more than one line and join together
two or more successive lines.

Split line before S.B Splits the current line before the

<string> <string> specified string. The first part of the line
is sent to the output queue; the second
part is made into a new non-original
current line. Qualifiers can be used to
restrict the context of the string.

Split line after S,A Splits the current line after the specified

<string> <string> string. The first part of the line is sent to
the output queue; the remainder of the
line becomes the new current line.
Qualifiers can be used to restrict the
context of the string.

Join two lines CL Joins the current line with the next line of
[<string>] the source file. The string argument is
optional; however, if a string is specified
it is added to the end of the current line
and that whole line is joined with the
next line in the source file.

Renumbering Lines

These commands renumber the source file's lines to include non-
original lines and to update a file that has been edited.

Renumber source =<n> Sets the current line number to <n>. All

lines subsequent original and non-original
lines below <n> are renumbered if you
move to them.

Return to the REWIND Moves back through the source file to
beginning source make line 1 the current line. EDIT scans
file the rest of the source file and writes the

lines to the destination file. This file is
closed and reopened as a new source
file. Non-original lines are now
recognized as original lines. Can be
entered as REWI.

EDIT 4-51

Verifying Lines

These commands describe different ways of verifying lines.

Turn Verification V +1- Turns line verification on or off. If off, the
on/off lines are not displayed on the screen.
To turn off, enter V -. To turn on, enter V
+.
Verify the current ? Verifies the current line by displaying the
line line number and the contents of the line.
Verify the current ! Produces two lines of verification. In the
line with tirst line all nongraphic characters are
character replaced with the first character of their
indicators hexadecimal value. In the second line, a

minus sign is displayed under all
positions corresponding to upper case
letters and the second hexadecimal digit
corresponds to nongraphic characters.
Ali other positions contain spaces. In
binary files, nongraphic characters are
represented with question marks (?7?).

Inspecting the Source File

These commands advance through the source file, sending the lines it
passes to the verification file, as well as to the normal output. They
are known as Type commands because they display lines on the
screen.

Type <n> linesto T<n> Types the specified number of lines to

the screen the screen. The first line typed is the
current line. Omitting the <n> continues
typing to the end of the source file.
Interrupt the command with Ctrl+C.

Type the linesin T,P Displays the lines currently held in the
the output queue output queue.

Type until EDIT TN Types from the current line forward until
has replaced all all the lines in the output queue are

the lines in the replaced. The previous contents are

output queue sent to the destination file.

4-52 EDIT

Type with line T,L <n> Similar to the T command. Types a

numbers specified number of lines, displaying the
line numbers. EDIT displays + + + + for
inserted or split lines since they do not
have line numbers.

Making Global Changes

These commands start and stop global changes. Global changes take
place automatically as EDIT scans the source file in a forward
direction. These commands automatically apply an A, B, or E
command, as appropriate, to any occurrence of <stringl> in a new
current line. They also apply to the current line that is in effect when
the command is given.

GA [qualifier]) <stringl> <string2>
GB [qualifier] <stringl> <string2>
GE [qualifier] <stringl> <string2>

For example, if you want to change DFO0: to DF2: throughout an
entire file, enter:

GE /DFO0:/DF2:/

Cancel a global CG [<id Cancels a global command. The

command numbers>] identification number set with a GA,
GB, or GE command is output to the
verification file or the screen if EDIT is
interactive. If no argument is specified,
all global operations are cancelled. To
cancel a specific operation, enter the
identification number after the CG

command.
Suspend a global SG [<id Suspends a global command. All
command numbers>) global operations are suspended if no

argument is given. Enter the
identification number to suspend a
specific operation.

Enable a global EG [<id Resumes global operation that had

command number>] been suspended with the SG
command. Unless a specific
identification number is provided, all
global commands are resumed.

EDIT 4-53

Show gobal SHG Displays the current global commands

commands and their identification numbers. Also
provides the number of times each
global string was matched.

Changing Command, Input, and Output Files

These commands change the files set up when you started EDIT from
the Shell. These files are:

¢ the command file — started with the WITH option.
o the input file — the source file specified with FROM.
o the output file — the destination file specified with TO.

Changing the C <filename> Reads EDIT commands from a

Command File specified file. Delimit the file using a
character other than a slash (/) since
AmigaDOS uses these characters to
separate file names. When all
commands in the specified file are
executed, the file is closed. You can
then enter the commands through the

keyboard.
Changing the FROM Reads lines from another source file.
Input File <filename> EDIT does not close the original

source file. Reselect the source file by
entering the FROM command without
an argument. For examples of the
FROM command, see page 4-54.

Closing a File CF <filename> Closes the destination file that was
originally specified with the TO
command. You can then open that file
for input. CF can also close a new
input file that is open. For examples
of the CF command, see page 4-54.

4-54 EDIT

Changing the TO Specifies a different file as the

Output File <filename> destination file. The TO command
writes the existing queue of output
lines to the new TO file. The new TO
file is used until another file is
specified. Reselect the original
destination file by using the TO
command with no argument. The
alternate output file remains open, but
unused. For examples of the TO
command, see page 4-54.

Stop executing Q Stops EDIT from executing the current
the command file command file specified with the WITH
keyword or with the C command.
EDIT reverts to any previous
command file. Using Q at the
outermost level is equivalent to using
the W command.

The FROM, CF, and TO commands are used as follows:

Command Action

M10 Pass lines 1-9 in the original source file to the output
queue.

FROM .XYZ. Select the XYZ file for new input; line 10 of the original

source file remains current.

M6 Pass line 10 from the original file, then pass lines 1-5
from the XYZ file to the output queue. Line 6 of XYZ is
the new current line.

FROM Reselect the original source file.

M14 Pass line 6 from XYZ, then lines 11-13 from the original
source file to the output queue. Line 14 of the source file
is the new current line.

FROM .XYZ. Reselect file XYZ. Line 14 of the source file is still the
current line.
M* Pass line 14 of the source file and all remaining lines of

file XYZ to the output queue. An extra line is added to
the end of file XYZ. That line is the new current line.

EDIT

4-55

Command Action

(cont'd) (cont'd)

FROM Reselect the original source file. The extra line added to
file XYZ is still the current line.

CF .XYZ. Close file XYZ.

Mm* Pass the remaining lines of the source file (lines 15 to the
end of the file) to the output queue.

M11 Pass lines 1-10 of the source file to the original
destination file.

TO .XYZ. Make XYZ the new output file.

M21 Pass lines 11-20 to file XYZ.

TO M31 Make the original destination file current, and pass lines
21t0 30toit.

TO .XYZ. Make XYZ the current output file.

M41 Pass lines 31 to 40 to XYZ.

TO Make the original desination file current.

TO .XYZ. Send the output queue to file XYZ.

1000N Advance through the next 1000 lines of the source file.

TO Select the original destination file.

CF .XYZ. Close the XYZ file.

12000 .XYZ. Insert the 1000 lines from the source file that were sent to

file XYZ back into the source file above line 2000.

4-56 EDIT

Ending EDIT

These commands exit EDIT.

Exit, saving w Exits EDIT, saving all changes to the
changes destination file specified by TO. EDIT

exits after reaching the end of the source,
closing all the files, and relinquishing
memory. If you started EDIT without
specifying a destination file, it renames
the temporary destination with the same
name as the original source file, which is
renamed .T/Edit-backup. This backup is
only available until the next time you run

EDIT.
Exit, without STOP Stops EDIT immediately without saving
saving changes any changes to the source file. Prevents

EDIT from overwriting the original source
file, ensuring that no changes are made
to the original input information.

Chapter 5

Using Scripts

Script files are text files that contain lists of commands for repetitive
or complicated tasks or for performing the same operation on multiple
files. This chapter includes the following information about script
files:

¢ Understanding scripts

e Scripting characters

e Script commands

« Condition flags

o Debugging script files

« Environment variables

Understanding Scripts

A script is a text file that contains a series of commands. Using
scripts is a way to automate complex or repetitive tasks, especially
those that you need to perform regularly. A script can perform
virtually any operation normally done one command at a time,
including working with programs and data files; performing
calculations; and operating interactively, accepting and displaying
information. Essentially a script is a small program that can be
easily edited.

To create a script, follow these steps:
1. Open a text editor, such as ED, that saves files in ASCII format.

2. In the text editor, enter the script commands in the sequence in
which they are to be performed.

5-2 Understanding Scripts

3. Save the file. The S: directory is usually used for script files, but
you can store a script anywhere.

You can then run the script in the Shell, entering the EXECUTE
command followed by the full path to the script.

Note You can avoid having to use the EXECUTE command
and the full path by setting the script's s protection bit.
Enter the command PROTECT <script> +s,
substituting the path to the script. When the s bit is
set, enter only the name of the script to execute it.

It is possible to run a script that has a Workbench project icon by
using the ICONX command as the default tool. For more information
on the ICONX command, see Chapter 6.

Kinds of Scripts

There are several kinds of scripts that you can use on the Amiga,
including scripts of AmigaDOS commands, scripts of ARexx
commands, and scripts of ED commands. For details on writing
ARexx scripts, see the ARexx User's Guide. See the ED section of
Chapter 4 for information on ED command scripts.

When to Use ARexx

You can create both AmigaDOS and ARexx scripts on the Amiga.
These scripts are not mutually exclusive; under AmigaDOS Release 2
and beyond, ARexx commands can appear in AmigaDOS scripts and
vice versa. However, different tasks are appropriate to each.

Unlike ARexx, AmigaDOS is not a general purpose programming
language. AmigaDOS is oriented toward basic file management and
system configuration tasks. ARexx is meant to be used for
accomplishing tasks more complex than simple branching and
conditional execution.

Special Script Characters 5-3

Simple Scripts

A script can be as simple as a series of paths, telling the Amiga to run
certain programs. A User-startup file is a good example of a simple
script. You can add various configuration commands, such as an
ADDBUFFERS statement, to such a script without worrying about
affecting program flow or using error checking. For more information
about the User-startup file, see Appendix D.

Automatic Scripts

You can automatically generate scripts using the LIST command.
LIST has an LFORMAT option that allows you to modify its output to
include any text you wish along with the usual LIST output. This
text can be a command and command keywords, with the file name
LISTed appearing as an argument to the command. If you list the
contents of a directory this way, redirecting the output to a file, you
have a ready-made script that applies a command to the contents of
that directory.

When an operation on multiple files is too involved to be done with a
single pattern matching command, use an automatically generated
script to execute the command for each of the files. For example, an
operation that renames a series of files, giving the current file names
the same extension, cannot be done with a single pattern-matching
RENAME. See the LIST section in Chapter 6 for information on
LIST's LFORMAT option and the examples in Chapter 8 for an
illustration of this technique.

Special Script Characters

The semicolon, back apostrophe, dollar, double dollar, and question
mark are special characters that are used primarily in scripts to add
comments, execute commands from within strings, introduce
environment variables, reference the current Shell number, and
accept input redirection.

5-4 Special Script Characters

Semicolon (;)

Semicolons add comments to command lines. All characters to the
right of a semicolon are ignored, allowing you to place descriptive
comments on the same line with AmigaDOS commands. For
example:

ASSIGN T: RAM:t ;set up T: directory for
;scripts

Comments can continue onto additional lines if they are too long to fit
on one line. New lines must begin with a semicolon and should be
indented to the same level as the previous comment for clarity.

Back Apostrophe ()

Back apostrophes are used to execute commands from within a string.
If a string containing a command enclosed in back apostrophes is
printed, the enclosed command is executed. For example:

1> ECHO "The date and time are: “date’"

prints "The date and time are: " followed by the output of the DATE
command. When a command such as DIR that produces multiple
lines of output is embedded in an ECHO statement, the output is not
properly formatted; all of it appears on one line.

Note Commands that refer to the current directory do not
work correctly when invoked from within a string with
the back apostrophe. Using the back apostrophe
automatically sets up a temporary sub-shell for that
command only. References to a current directory
access the sub-shell's directory.

Dollar ($)

The dollar sign is used in two ways: as an operator that introduces an
environment variable (which also works outside of a script) and in a
bracketed statement to separate a variable value from a default
value.

For example, with an environment variable:

1> ECHO "Current Kickstart version: $Kickstart"
Current Kickstart version: 39.106

Script Commands 5-5

As a default separator in a script:
COPY foo.library TO <LIBS:Suserlibdir>

You can change the character that provides this function from the
dollar sign to something else with the .DOLLAR scripting keyword.

Double Dollar (<$$>)

A bracketed double dollar sign (<$$>) substitutes the current process
number. You can reference the current Shell number by the double
dollar sign character string <$$> including brackets since it always
returns the current process number as a string. When you create
temporary files in a multitasking environment, it is essential for
these files to have unique names so that processes do not interfere
with each other. Adding the <$$> string to file names creates unique
names for temporary files, logical assignments, and PIPEs. A KEY
statement is required in any script that uses <$$>. .KEY is described
on page 5-7. To avoid conflict with the redirection arguments, <$$>'s
angle brackets can be redefined using the .BRA and .KET commands.
.BRA and .KET are described on page 5-8.

Question Mark (?)

The question mark, when used as a separate argument in a
command, instructs the command to accept input redirection.

Script Commands

Any AmigaDOS command can be used in a script, however, there are
some commands that are used only in scripts. You can do the
following with script commands:

« Parameter substitution

o Enter arguments on the command line

¢ I/O redirection

o Specify default strings

« Enter comments

+ Nest commands within scripts

+ Create interactive scripts

5-6

Script Commands

e Create scripts that repeat commands

Script-Specific Commands

The following commands are typically used only with scripts:

Script Command

Meaning

ASK Asks for user input.

ECHO Prints a string.

ELSE Allows an alternative in a conditional block.

E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>