

COPYRIGHT

Copyright © 1993 by Commodore Electronics Limited. All rights Reserved. This document may not. in
whole or in part, be copied, photocopied, reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Commodore Electronics Limited.
If this product is being acquired for on behalf of the United States of America, its agencies and/or
instrumentalities, it is provided with RESTRICTED RIGHTS, and all use, duplication, or disclosure with
respect to the included software and documentation is subject to the restrictions set forth in subdivision
(b) (3) (ii) of The Rights in Technical Data and Computer Software clause at 252.227-7013 of the DOD
FAR. Unless otherwise indicated, the manufacturer/integrator is Commodore Business Machines. Inc.,
1200 Wilson Drive, West Chester, PA 19380.
The material set forth in the AmigaDOS User's Guide is adapted from The AmigaDOS Manual, 2nd
Edition, Copyright© 1987 by Commodore-Amiga, Inc. used by permission of Bantam Books. All Rights
Reserved. The Times Roman, Helvetica Medium, and Courier fonts included in the Fonts directory on the
Fonts disk are Copyright © 1985, 1987 Adobe Systems, Inc. The CG Times, Univers Medium, and
LetterGothic fonts included on the Fonts disk are Copyright © 1990 by Agfa Corporation and under
license from the Agfa Corporation.

DISCLAIMER

With this document Commodore makes no warranties or representations, either expressed or implied,
with respect to the products described herein. The information presented herein is being supplied on an
"AS IS" basis and is expressly subject to change without notice. The entire risk as to the use of this
information is assumed by the user. IN NO EVENT WILL COMMODORE BE LIABLE FOR DIRECT,
INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY CLAIM
ARISING OUT OF THE INFORMATION PRESENTED HEREIN. EVEN IF IT HAS BEEN ADVISED OF
THE POSSIBILITIES OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE LIMITATION OF
IMPLIED WARRANTIES OR DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY.

TRADEMARKS

Commodore, the Commodore logo, CBM, and AUTOCONFIG are trademarks of Commodore Electronics
Limited in the United States and other countries. Amiga. AmigaDOS, Kickstart, Workbench and
Bridgeboard are trademarks of Commodore-Amiga, Inc. in the United States and other countries.

MS-DOS is a registered trademark of Microsoft Corporation. CrossDOS is a trademark of Consultron.
Compugraphic, CG, and Intellrfont are registered trademarks of Agfa Corp. CG Triumvirate is a trademark
of Afga Corp. CG Times is based on Times New Roman under license from The Monotype Corporation
pic. Times New Roman is a registered trademark of Monotype Corporation. Univers is a registered
trademark of Linotype AG. Universe is under license from Haas Typefoundry Ltd. Diablo is a registered
trademark of Xerox Corporation; Epson is a registered trademark of Epson America. Inc.; IBM and
Proprinter XL are registered trademarks of International Business Machines Corp; Apple. Macintosh, and
Imagewriter are trademarks of Apple Computer, Inc.; LaserJet and LaserJet PLUS are trademarks of
Hewlett-Packard Company; NEC and Pinwriter are registered trademarks of NEC Information Systems;
Okidata is a registered trademark of Okidata, a division of Oki America, Inc.; Okimate 20 is a trademark of
Okidata, a division of Oki America., Inc. This document may also contain references to other trademarks
which are believed to belong to the sources associated therewith.

Coverdesign and Print by Village Tronic
Village Tronic Marketing GmbH, Wellweg 95 ,31157 Sarstedt, Germany

This book was produced using a variety of Commodore systems by Kitsel Outlaw, Ross
Hippely, Barbara Siwirski, and Carina Ahren.

P/N: 371085-01

Table of Contents

Chapter 1
Selecting an Interface
Choosing Your Interface..1-2

Workbench Users... 1 -2
Shell Users... 1-3

AmigaDOS Tasks...1-3

Chapter 2
Understanding the AmigaDOS Shell
About the Shell..2-1
Opening Shell Windows...2-2
Closing Shell Windows...2-3
Using the Shell..2-3

Command Line Editing and Control.. 2-5
Using the Command History... 2-6
Copying and Pasting... 2-7
Working with the Shell... 2-9

iv Table of Contents

Chapter 3
Working With AmigaDOS
Managing Files, Directories, and Disks... 3-1

File System Terms.. 3-2
File Management... 3-2

Devices.. 3-3
Directories.. 3-5
Files... 3-5
.Info Files... 3-5

Naming Conventions... 3-6
Keywords.. 3-7

Command Line Basics... 3-7
Files, Programs, Commands, and Scripts...3-7

Files... 3-8
Programs.. 3-8
Commands... 3-8
Scripts.. 3-8

Search Path.. 3-9
Current Directory... 3-10

Types of Commands.. 3-11
AmigaDOS Command Structure... 3-12
Special AmigaDOS Characters..3-14

Command Line Characters... 3-14
Pattern Matching... 3-16

Wildcard Characters... 3-16
Redirection.. 3-18

Angle Brackets... 3-18
Running Programs... 3-20

Running Programs in the Background..3-21
Refining Your AmigaDOS Environment...3-22

Table of Contents v

Chapter 4
Using the Editors
ED... 4-1

Starting ED...4-3
Using ED..4-4

Immediate Commands... 4-4
Moving the Cursor in Immediate Mode.. 4-4
Inserting Text in Immediate Mode.. 4-6
Deleting Text in Immediate Mode.. 4-6
Changing Case in Immediate Mode... 4-7
Extended Commands...4-7
Using String Delimiters...4-8
Using a File Requester...4-8

ED Menus..4-8
Enabling Expanded Menus.. 4-9
Project Menu.. 4-11
Edit Menu... 4-12
Movement Menu.. 4-13
Search Menu.. 4-13
Settings Menu............................. :... 4-15
Set FN Key... 4-15
Special Key Mappings... 4-16
Command Menu... 4-18
Other ED Commands... 4-18

Repeating Commands in Extended Mode.. 4-20
Customizing ED.. 4-21

Set Menu Item.. 4-21
Printing From ED... 4-23
Quitting ED.. 4-24
ARexx Support...4-24

ED/ARexx Example Program... 4-25
MEmacs..4-27

Starting MEmacs... 4-27
MEmacs Commands... 4-28
Menu Commands.. 4-30

Project Menu.. 4-31
Edit Menu... 4-33
Window Menu.. 4-35
Move Menu.. 4-35
Line Menu.. 4-36
Word Menu.. 4-37

vi Table of Contents

Search Menu.. 4-38
Extras Menu... 4-39

Commands Not in Menus..4-41
Customizing MEmacs.. 4-42
Quitting MEmacs... 4-43

EDIT.. 4-43
Starting EDIT... 4-44
EDIT Commands... 4-45

Selecting the Current Line.. 4-46
Editing the Current Line... 4-47
Inserting and Deleting Lines.. 4-47
Editing Line Windows... 4-48
Splitting and Joining Lines... 4-50
Renumbering Lines.. 4-50
Verifying Lines... 4-51
Inspecting the Source File... 4-51
Making Global Changes... 4-52
Changing Command, Input, and Output Files..................................4-53

Ending EDIT.. 4-56

Chapter 5
Using Scripts
Understanding Scripts... 5-1

Kinds of Scripts... 5-2
When to Use ARexx... 5-2
Simple Scripts.. 5-3
Automatic Scripts... 5-3

Special Script Characters.. 5-3
Script Commands... 5-5

Script-Specific Commands.. 5-6
Dot Commands... 5-6

Allowing Arguments... 5-7
Substitution.. 5-8
Defaults.. 5-9

Comments... 5-10
Nesting Commands... 5-10
Interactive Script Files... 5-11
Repeating Commands... 5-12
Ending a Script.. 5-12

Table of Contents vii

Condition Flags...5-13
Debugging Script Files...5-14
Using Environment Variables..5-14

Creating Environment Variables... 5-16
SET...5-16
SETENV... 5-16

Chapter 6
AmigaDOS Command Reference
Command Documentation...6-5

Format..6-6
Template..6-8

Command Listing..6-10
ADDBUFFERS...6-10
ALIAS...6-11
ASK..6-12
ASSIGN..6-13
AVAIL...6-17
BREAK...6-18
CD..6-19
CHANGETASKPRI.. 6-21
COPY...6-22
CPU..6-24
DATE..6-26
DELETE...6-28
DIR...6-29
DISKCHANGE..6-32
ECHO...6-32
ED..6-33
EDIT...6-34
ELSE..6-34
ENDCLI..6-35
ENDIF..6-35
ENDSHELL..6-36
ENDSKIP...6-36
EVAL..6-37
EXECUTE..6-38
FAILAT...6-39
FAULT..6-40

Table of Contentsviii

FILENOTE... 6-41
GET... 6-42
GETENV.. 6-43
ICONX... 6-43
IF... 6-45
INFO.. 6-46
INSTALL.. 6-47
JOIN.. 6-48
LAB... 6-49
LIST... 6-49
LOADRESOURCE.. 6-52
LOADWB... 6-53
LOCK... 6-54
MAGTAPE... 6-55
MAKEDIR.. 6-56
MAKELINK.. 6-57
MOUNT... 6-57
NEWCLI.. 6-59
NEWSHELL... 6-59
PATH... 6-62
PROMPT... 6-64
PROTECT... 6-65
QUIT.. 6-66
RELABEL.. 6-67
REMRAD... 6-68
RENAME... 6-68
REQUESTCHOICE... 6-69
REQUESTFILE... 6-70
RESIDENT.. 6-72
RUN... 6-74
SEARCH... 6-76
SET... 6-77
SETCLOCK... 6-78
SETDATE.. 6-79
SETENV.. 6-79
SETFONT.. 6-80
SETKEYBOARD... 6-81
SKIP.. 6-82
SORT.. 6-84
STACK.. 6-85
STATUS.. 6-85
TYPE... 6-86
UNALIAS... 6-87
UNSET.. 6-87

Table of Contents IX

UNSETENV... 6-88
VERSION...6-88
WAIT..6-89
WHICH...6-90
WHY...6-91

System Commands...6-92
ADDDATATYPES... 6-92
BINDDRIVERS.. 6-92
CONCLIP...6-93
IPREFS... 6-93
SETPATCH... 6-94

Chapter 7
Workbench-Related
Command Reference
Preferences Editors..7-4

Font..7-5
IControl...7-5
Input...7-6
Locale..7-6
Overscan..7-7
Palette..7-7
Pointer..7-8
Printer...7-8
PrinterGfx...7-9
PrinterPS..7-9
ScreenMode.. 7-10
Serial..7-10
Sound...7-11
Time...7-11
WBPattern... 7-12

Commodities Programs..7-12
AutoPoint... 7-13
Blanker.. 7-14
ClickToFront.. 7-15
CrossDOS... 7-15
Exchange...7-16
FKey...7-16
MouseBlanker... 7-17

X Table of Contents

NoCapsLock.. 7-17
Other Workbench-Related Tools and Programs............................ 7-18

Calculator.. 7-18
Clock... 7-19
CMD.. 7-20
DiskCopy... 7-21
FixFonts.. 7-22
Format... 7-23
GraphicDump.. 7-25
IconEdit... 7-26
InitPrinter... 7-26
Intellifont.. 7-26
KeyShow... 7-27
MEmacs.. 7-27
More.. 7-27
MultiView... 7-29
NoFastMem... 7-32
PrepCard... 7-32

Chapter 8
Command Examples
Basic Tasks... 8-1

Opening a Shell Window... 8-1
Running Programs from the Shell... 8-2
Stopping a Program.. 8-2
Changing the Current Directory... 8-3
Changing the Search Path.. 8-4
Displaying the Contents of a Directory.. 8-4
Copying Files and Directories... 8-7
Creating a User-startup File.. 8-8
Creating an Assignment.. 8-9
Accessing the Expanded ED Menus... 8-10
Working with a Single Shell... 8-10
Attaching Icons.. 8-11
Creating Scripts Conveniently... 8-12

Occasional Tasks.. 8-12
Creating Aliases To Reduce Keystrokes... 8-13
Customizing NEWSHELL.. 8-13
Modifying the Prompt.. 8-14
Creating a Custom Ram Disk Icon.. 8-15

Table of Contents xi

Deleting Files with Icons... 8-16
Testing Commands... 8-16
Creating a Script to Move Files... 8-17
Deleting with Interactive DIR... 8-18
Generating Scripts with LIST LFORMAT.. 8-19
Customizing LIST Output.. 8-20
Using ICONX to Run Scripts... 8-20
Preventing Displayable Output From Scripts.. 8-21
Entering and Testing ARexx Macros... 8-21
Sorting and Joining Files... 8-21

Advanced Tasks..8-22
Testing Software Versions.. 8-22
Flushing Unused Fonts and Libraries... 8-22
AmigaDOS Loops Using EVAL... 8-23
Using PIPE:..8-25
Recursive AmigaDOS Command Scripts.. 8-26

Appendix A
Error Messages

Appendix B
Additional Amiga Directories
DEVS:..B-3

Device Files.. B-3
Other Files... B-4

Using Mount Files or a MountList.. B-4
Creating a Mount File or MountList Entry..B-5

S: Directory... B-8
ED-Startup.. B-8
SPat, DPat.. B-9
PCD... B-9

L: Directory... B-10
Aux-Handler.. B-10
Queue-Handler (PIPE:)... B-11
Port-Handler.. B-11
CrossDOSFileSystem... B-11

xil Table of Contents

FileSystem_Trans...B-12
CDFileSystem...B-12

FONTS:...B-12
Bitmap Fonts...B-12
Outline Fonts...B-13

UBS: Directory..B-13
REXX:...B-15
LOCALE:..B-15
ENVARC:..B-16
ENV:...B-16
CLIPS:..B-16
T:...B-16
Classes..B-17
C :..B-17

Appendix C
Using Floppy-Only Systems
Making Commands Resident.. C-1
Preloading Resources... C-2
Using ASSIGN'S PATH Option.. C-2
Removing Files From Your Workbench Disk.................................. C-3

Files You Can Delete..C-4
Files To Avoid Deleting...C-4

Using the Ram Disk... C-5
Copying From One Disk to Another... C-6
Recoverable Ram Disk..C-6

Bootable RAD:...C-7

Table of Contents xiii

Appendix D
Advanced AmigaDOS Features
Customizing the Window.. D-1

Public Screens - PUBSCREEN Option...D-1
Customizing the Shell.. D-2

Using Aliases.. D-2
Changing the Prompt.. D-3

Using Escape Sequences.. D-3
Customizing Startup Files... D-6

Editing Startup Files.. D-7
Common Additions to the Startup Files...D-8

Using PIPE:... D-9

Glossary

Index

Welcome

The Commodore® Amiga® line of personal computers offers a unique
combination of versatility, computing power, and usability. The fast,
multitasking Amiga operating system allows users at any level of
experience to take advantage of their system's resources.

AmigaDOS™ is the Amiga Disk Operating System. A disk operating
system is software that manages data manipulation and control on
the computer, such as:

• Providing a filing system that organizes the data that programs
use and produce

• Handling information storage and retrieval from floppy disks,
hard disks, and other storage media

• Providing an interface to peripheral devices, such as printers and
modems

AmigaDOS provides a Command Line Interface (CLI), which means
that you work with it through typed commands. Some of these
commands parallel familiar Workbench™ operations, such as Copy,
Rename, and Format Disk. There are also advanced commands that
allow you to create scripts for performing repetitive tasks, to monitor
the use of memory, and to perform other tasks unavailable through
the Workbench. The commands are entered through a special
window, known as a Shell window. Shell windows open on the
Workbench screen and are similar to other Workbench windows,
except that Shell windows only display text.

Together AmigaDOS and the Amiga Shell offer you a powerful and
flexible operating environment with these features.

xvi Welcome

Operating System Features
• Complete control over all aspects of Amiga operation
• Hierarchical file system
• Filenames up to 30 characters, upper/lower case preserved

without case-sensitivity
• Configurable command search path
• Pattern matching
• Background command processing
• Many commands internal, others can be made memory resident
• Shared libraries
• Multiple file systems supported, including CrossDOS (MS-DOS

file system)

Shell Features
• Multiple, independent Shell windows
• Shell windows sizable, draggable, depth-adjustable
• Configurable prompt, font, and text color and style
• Command history and command line editing
• Fast character-mapped display
• Aliases
• Local and global environment variables
• Scripting
• Command input and output redirection
• Multiple directory assignment
• Copy and paste text among console windows
• ARexx support

Welcome xvii

Using this Manual
This manual, which should be used in conjunction with the
Workbench User's Guide, describes the AmigaDOS software, its
components, and how to use it. It assumes that you are familiar with
Workbench, but have never worked with AmigaDOS. If this is the
case, we recommend that you read through the entire manual to learn
the concepts associated with the Amiga operating system before
beginning to use it. After you have familiarized yourself with
AmigaDOS, use this manual as a reference tool when executing
commands or writing programs or scripts.

The following is a brief description of each chapter and appendix:

C hapter 1. Selecting an Interface: This chapter gives information
to help you determine when to use AmigaDOS rather than
Workbench.

C hapter 2. U nderstanding the AmigaDOS Shell: This chapter
describes the AmigaDOS Shell in detail.

C hapter 3. W orking with AmigaDOS: This chapter describes the
file management system, types of commands, and components of
AmigaDOS commands.

C hapter 4. U sing the Editors: This chapter provides a full
explanation for using the ED text editor and command listings for the
MEmacs and EDIT text editors.

C hapter 5. U sing Scripts: This chapter describes AmigaDOS
scripts and how to create them.

C hapter 6. AmigaDOS Command Reference: This chapter
describes each AmigaDOS command in detail.

C hapter 7, W orkbench-Related Command Reference: This
chapter describes the Workbench-related commands usable from
AmigaDOS.

C hapter 8. Command Exam ples: This chapter provides examples
of how to perform common tasks with AmigaDOS commands.

Appendix A. E rror M essages: This chapter contains a list of
possible program problems and suggested solutions.

xviii Welcome

Appendix B. A dditional Amiga D irectories: This chapter
describes S:, DEVS:, L:, FONTS:, and other directories.

A ppendix C. U sing Floppy-Only System s: This chapter tells you
how to make the most of your system if you only have one floppy drive
and no hard drive.

Appendix D. Advanced AmigaDOS Features: This chapter
provides information on customizing AmigaDOS for advanced Amiga
users.

A Glossary and an Index follow Appendix D.

Documentation Conventions
The following conventions are used in this manual:

COMMANDS, Commands, their keywords, device names, and
ASSIGNS, DEVICES, assigned directories are displayed in all upper case
and NAMES letters. File and directory names are displayed in

initial caps. However, they do not need to be entered
this way. The Amiga ignores case differences in
commands and arguments.

<n> Angle brackets enclose variable information that you
must supply. In place of <n>, substitute the value,
text, or option desired. Do not enter the angle
brackets when entering the variable.

courier Text appearing in the Courier font represents
information that you type in or text displayed in a
window in response to a command.

Key1 + Key2 Key combinations displayed with a + (plus) sign
connecting them indicate pressing the keys
simultaneously. For example, Ctrl+C indicates that
you hold down the Ctrl key and, while holding it down,
press C.

Key1, Key2 Key combinations displayed with a comma separating
them indicate pressing the keys in sequence. For
example, Esc,0 indicates that you press and release
the Esc key, followed by the 0 key.

Welcome xix

Return

Enter

command line
indentation

Directions to press the Return key indicate that you
press the large odd shaped key on the right side of
the keyboard above the right shift key.
Directions to "enter" something indicate that you type
in the indicated information and press Return.
On command lines that are long enough to wrap to the
next line, this manual shows the wrapped lines as
indented for documentation purposes only. In
practice, the wrapped lines align with the first
character of the Shell prompt.

Related Documentation
AmigaDOS Quick Reference

Workbench User's Guide

ARexx User's Guide

In addition, the Amiga ROM Kernel manuals published by Addison-
Wesley provide technical documentation of AmigaDOS for
programmers and developers.

Chapter 1

Selecting an Interface

Although the Amiga comes with the Workbench graphical user
interface (GUI) and most AmigaDOS operations can be run from the
Workbench without opening a Shell window, there are several
reasons to also learn how to use the AmigaDOS command line
interface. Among the advantages of working directly with AmigaDOS
are:

• P ersonal preference

Some users prefer working with text and keyboard rather than a
mouse and icons. This may be a matter of personal taste or due to
familiarity with some other text-based computer system.

• W orkbench lim itations

Although most basic operations can be accomplished with equal
ease through the Shell or the Workbench, there are functions that
can be done only with AmigaDOS commands. These include
certain basic system configuration tasks and the running of
scripts and utilities that do not have icons. Note that all
AmigaDOS functions are available in Workbench using the
Execute Command item in the Workench menu.

• Speed

Users who can type reasonably well and are familiar with
AmigaDOS commands often find that typing a command is faster
than performing the equivalent operation with the mouse. This is
particularly true when more than one command must be
executed. Shell-based capabilities, such as pattern matching and
redirection, make some tasks particularly easy when compared to
Workbench methods. In addition, the text output of AmigaDOS
commands usually displays faster than do requesters and
windows full of icons.

1-2 Choosing Your Interface

• Control and flexibility

Running programs from the Shell makes it easier to control
Amiga multitasking. Also, when using applications, such as
software compilers that offer numerous non-time options, it is
quicker to specify often-changed options on a command line than
by editing the Tool Types of an icon.

• Scrip ting

Performing complex, repetitive, and/or unattended tasks is
difficult, if not impossible, using a GUI. Such tasks are ideally
suited to scripts, which are text files of AmigaDOS commands.

• Saving resources for your applications

The text interface requires less memory, disk space, and other
system resources than the graphic imagery of a GUI.

Choosing Your Interface
Although some users prefer to use the Shell or the Workbench
exclusively, most can make use of both once they learn the basics of
AmigaDOS. Because Shell windows open on the Workbench screen, it
is easy to switch back and forth between the two methods of working.
Whether you do something through the Workbench or the Shell
depends on the method that appears easiest to you for that particular
task.

Workbench Users
Although you can work primarily in Workbench, we recommend that
you become familiar with AmigaDOS because you may need to use
AmigaDOS commands or examine a script to determine its function.
The many convenience features of the Amiga Shell make the process
of learning and using AmigaDOS considerably easier than most
command line systems. If you prefer not to use AmigaDOS directly,
you can attach scripts and Shell-only commands to icons.

AmigaDOS Tasks 1-3

Shell Users
For Shell users who choose not to open the Workbench, the Amiga's
built-in GUI support is still an asset. Shell windows—like
Workbench windows—can be quickly moved, sized, depth-adjusted,
and opened or closed at will using the mouse. Shell windows can be
opened on public screens other than the Workbench. FKey,
MouseBlanker, and other Commodity utilities allow you to further
customize your command line working environment.

AmigaDOS Tasks
When determining the most efficient way to interface with your
Amiga, use the following table to identify where specific tasks are
discussed. Then compare the AmigaDOS method to that available
through Workbench. Select the method that is easiest and most
comfortable for you to accomplish your goal.

Setting up your Preferences Where to find it

Selecting a language Chapter 7
Selecting a keyboard type and mouse options Chapter 7
Selecting the default display mode Chapter 7
Editing Workbench colors Chapter 7
Setting the system time and date Chapter 7
Selecting system fonts Chapter 7
Selecting printer options Chapter 7
Editing the mouse pointer Chapter 7
Selecting Workbench background patterns Chapter 7
Specifying the display beep sound type Chapter 7

1-4 AmigaDOS Tasks

Setting up your disks and work environment Where to find it

Formatting and copying disks
Adding directories to the search path
Creating aliases

Chapter 7
Chapters 6, 8
Chapters 6, 8
Appendix C

Assigning directories and devices Chapters 6, 8
Appendix C

Using the ASSIGN PATH option Chapter 6,
Appendix C

Making commands resident Chapter 6,
Appendix C

Customizing startup files
Creating new directories
Setting CrossDOS options
Setting up function keys
Preparing PCMCIA memory cards for use
Preloading resources into memory

Appendix D
Chapter 6
Chapter 7
Chapter 7
Chapters 6, 7
Chapter 6
Appendix C

Making room on your Workbench disk
Using mount files and MountLists

Appendix C
Chapter 6
Appendix B

Learning AmigaDOS and the Shell Where to find it

Deciding when to use AmigaDOS
Opening and closing Shell windows
Activating a Shell window

Understanding the basics of a command
Understanding the command line format

Understanding the command template
Understanding special characters in AmigaDOS
Using pattern matching and wildcard characters

Chapter 1
Chapters 2, 6, 8
Chapter 2
Chapter 6
Chapter 6
Chapter 6
Chapter 3
Chapter 3

AmigaDOS Tasks 1-5

Learning AmigaDOS and the Shell
(cont'd)

Where to find it
(cont'd)

Using command line editing Chapter 2
Using command history Chapter 2
Revealing previous command output Chapters 2, 8
Using copy and paste Chapter 2
Specifying paths Chapters 3, 8
Working with a single Shell Chapter 8
Understanding disk-based and internal commands Chapter 3
Customizing the Shell window Chapters 6, 8

Appendix D
Knowing the standard directory structure Appendix B
Naming and renaming disks, files, and directories Chapters 3, 6

Displaying information Where to find it

Determining the current directory Chapters 3, 8
Listing the contents of a directory (example) Chapters 6, 8
Displaying a command's template Chapter 3
Listing information about files and directories Chapters 6, 8
Using LIST LFORMAT (example) Chapter 6
Displaying or setting the date and time Chapter 7
Displaying graphics, text, and animation files Chapters 6, 7
Using an on-screen calculator Chapter 7

Using an on-screen clock Chapter 7
Displaying the keyboard keymap Chapter 7
Displaying software version numbers Chapter 6
Changing the Shell window font Chapter 6

Getting information about file systems Chapter 6

Using escape sequences Appendix D

Listing information about Shell processes Chapter 6

1-6 AmigaDOS Tasks

Running programs Where to find it

Running programs from the Shell
Using the correct path
Changing the current directory
Redirecting command input and output
Stopping a program (example)
Executing commands as background processes
Using ICONX (example)

Chapters 3, 8
Chapters 3, 8
Chapter 8
Chapter 3
Chapter 8
Chapters 6, 8
Chapter 8

Using scripts Where to find it

Running scripts
Exiting from a script
Editing text or scripts
Creating and modifying a User-startup file

Chapters 5, 6
Chapter 6
Chapter 4
Chapter 8
Appendix D

Using scripting characters
Setting the s protection bit
Creating scripts automatically
Using PCD

Chapter 5
Chapters 5, 8
Chapters 5, 6, 8
Chapter 8
Appendix B

Preventing screen output with >NIL:
Using script commands
Debugging scripts
Using environment variables
Creating loops using EVAL (example)
Creating a Move command

Chapter 8
Chapter 5
Chapter 5
Chapter 5
Chapter 8
Chapter 8

AmigaDOS Tasks 1-7

Text editors Where to find it

Using the ED editor
Accessing expanded ED menus
Using the MEmacs editor
Using the EDIT editor

Chapter 4
Chapter 8
Chapter 4
Chapter 4

Manipulating files Where to find it

Copying files or directories
Copying disks
Deleting files or directories
Deleting files with icons
Deleting with interactive DIR
Sorting and joining files
Testing commands
Using the Ram Disk
Removing unused fonts and libraries from memory
Using pipes (example)

Chapters 6, 8
Chapter 7
Chapters 6, 8
Chapter 8
Chapter 8
Chapter 8
Chapter 8
Appendix C
Chapter 8
Chapter 8,
Appendix B

Evaluating simple expressions
Locating specified text strings
Alphabetically sorting the lines of a file
Redirecting printer output
Updating .font files

Chapter 6
Chapter 6
Chapter 6
Chapter 7
Chapter 7

1-8 AmigaDOS Tasks

Workbench-specific tasks Where to find it

Specifying Workbench parameters Chapter 7
Editing icons Chapter 7
Attaching icons to files Chapter 8
Creating a custom Ram Disk icon Chapter 8
Using ICONX Chapter 8
Using an on-screen calculator Chapter 7
Using an on-screen clock Chapter 7
Printing a screen Chapter 7
Creating Workbench background patterns Chapter 7
Blanking the monitor screen Chapter 7
Blanking the mouse pointer Chapter 7
Changing Workbench colors Chapter 7
Changing the mouse pointer Chapter 7
Setting input options Chapter 7
Specifying fonts Chapter 7
Selecting display modes Chapter 7
Starting Workbench from the Shell Chapter 6

Chapter 2

Understanding the
AmigaDOS Shell

An AmigaDOS Shell is a special window on the Workbench screen
that accepts text input, allowing you to communicate with
AmigaDOS. The Shell is a type of Command Line Interface or CLI.
This chapter describes the following:

• About the Shell
• Opening and closing Shell windows
• Using the Shell

About the Shell
You can communicate directly with AmigaDOS through a Shell
console window, a text-only interface that accepts input entered from
the keyboard. The Shell window looks and acts like a Workbench
window with these exceptions:

• Icons cannot be dragged into the Shell window.
• The mouse can only be used for copy and paste operations, except

within the ED and MEmacs text editors.
• Scroll gadgets do not appear.
• The AmigaDOS Shell window uses only a non-proportional font,

normally the System Default Text font (Topaz or Courier)
specified by the Font Preferences editor.

• Any Workbench background patterns set in WBPattem do not
appear in Shell windows.

2-2 Opening Shell Windows

Figure 2-1 illustrates a Shell window opened on the Workbench
screen.

1 orkbench Screen

Sizing gadgetCursor

Depth gadget-----
Zoom gadget—-

Prompt —

Figure 2-1. Shell Window

Like Workbench, several independent Shell windows can be open at
the same time. While commands entered in one Shell are being
executed, you can enter and execute different commands in another
Shell window.

Opening Shell Windows
Shell windows can be opened in one of two ways:

• Click on the Shell icon in the Workbench System drawer.
• Use the NEWSHELL command described in Chapter 6.

Closing Shell Windows 2-3

When a Shell window is opened:

• The window is highlighted, indicating that it is the current
window

• A prompt appears, such as 1. SYS: >
• To the right of the prompt is a cursor, a small highlighted

rectangle

Like Workbench, only the currently selected window can receive
input. To enter information in a different window, click in it to make
it the current window. While a Shell window is the current window,
no menus are available in the Workbench title bar.

Closing Shell Windows
Use one of the following three ways to close a Shell window:

• Select the close gadget
• Enter the ENDSHELL command
• Press Ctrl+\

We recommend closing Shell windows when you are finished with
them. Any open window uses memory.

All non-detached programs that run from a Shell must be finished
before you can close the window. You can tell that a program is still
active if pressing Return does not produce a Shell prompt in the
window. Although you can still enter commands into such a window,
AmigaDOS does not respond to the commands until the running
program is exited.

Using the Shell
Enter AmigaDOS commands at the Shell's text prompt. Include with
the command any necessary information, such as file names or
command options. Press Return at the end of each command line to
execute the command. The Shell prompt reappears when the
command is finished executing.

2-4 Using the Shell

To see command output that has scrolled out of the Shell window,
enlarge the window by selecting the Shell zoom gadget or using the
sizing gadget. This reveals as much of the previous contents of the
window as fits. Figure 2-2 illustrates a Shell window before and after
using the zoom gadget to display the entire output of a LIST
command.

tonitorsanfo
(eynaps.iftfo
Winters, info
clipboard.dev ice
ifn.device
para de l . dev ice
printer.device
postscriptJftit.ps
serial.device
systen-confiauration
pataTypes.info
fccala,device
H3 file s - 5 directories
Workbench:Devs> I

Previous Output Revealed

t« Shell process A
l,Workbench^ cd d m
Workbench :Devs> LIST
lonitors
(ataTypes
(OSDrivers
’rin te rs
(eynaps
lOSDrivers.info
lon ito rs,in fo
(eynaps,info
P rinters,info
clipboard.device
ifn,device
w a i lei,device
printer.device
p o s ts c rip tjn it.p s
serial.device
systen-confiouratio#
)ataTypes,info
scaia.device
13 f i le s - 5 directories
1. Workbench;Devs> 1

__I m
Dir — rued 19-Apr
Dir — rwed 8 H e r
D i r — rued 19....
Dir — rued 28-Rpr
Dir — rued 19-Rpr
632 — ru-d 11-flpr
632— na-d 81-Apr
632 — -ru-d I1-Bpr
632 - — ru-d i1-fipr-

6944 -— ru-d 81-Bpr-
6884 - - r u - d 81-Apr-
4292 — -ru-d 81-Apr-

93 15:55185
93 17:18:55

-93 15:55:85
93 15:55:85
13 16:82:43
'3 17:23:26
13 17:23:26
13 17:23:26-9

27428 — ru-d 81-flpr-

232 — ru-d 81-Apr-

93 17:23:26
93 17:23:26
•93 17:23:26
93 17:23:26 ■3 I7:23:2f
3 17:23:21
■ 17:23:21

£22__
116 - — rued 23-Hbv-9218:85911 . ■

328 blocks used

9 3 17:2|:2(
9317:2: ‘

Figure 2-2. Revealing Previous Output with the Zoom Gadget

Using the Shell 2-5

Command Line Editing and Control
To simplify entering and editing command line text, the AmigaDOS
Shell provides the following editing key and key combination options:

left arrow Moves cursor one character to the left.
right arrow
Shift+left arrow
Shift+right arrow

Moves cursor one character to the right.
Moves cursor to the beginning of the line.
Moves cursor to the end of the line.

Backspace
Del
Ctrl+H
Ctrl+M
Ctrl+J

Deletes the character to the left of the cursor.
Deletes the character highlighted by the cursor.
Deletes the last character (same as Backspace).
Processes the command line (same as Return).
Adds a line feed.

Ctrl+W
Ctrl+X
Ctrl+K

Ctrl+Y
Ctrl+U

Deletes the word to the left of the cursor.
Deletes the current line.
Deletes everything from the cursor forward to the end
of the line.
Replaces the characters deleted with Ctrl+K.
Deletes everything from the cursor backward to the
start of the line.

In addition, the Shell supports the following keys and key
combinations:

Space bar (or any
printable character)

Suspends output (stops scrolling).

Backspace
Ctrl+C

Ctrl+D

Ctrl+F

Resumes output (continues scrolling).
Sends a BREAK command to the current process
(halts the process).
Sends a BREAK command to the current script (halts
the script).
Activates and brings Workbench program windows to
the front.

2-6 Using the Shell

Ctrl+S Suspends output.
Ctrl+Q Resumes output if it was suspended with Ctrl+S.
Ctrl+\ Closes the Shell window. When console I/O is

redirected to another device with * restores normal
I/O .

The Shell allows you to enter a command or other information while
listing output. However, this stops the output until you press the
Return key. The new command executes after the output is finished
listing.

If you enter a new command or text and then choose to delete it, the
original output resumes scrolling as soon as the last character is
erased.

Using the Command History
The Shell uses a 2 KB command line buffer to retain command lines,
which provides a command history. Using this history you can recall
previously entered command lines, edit them, and re-execute them.
This lets you easily repeat a command or enter several similar
commands. Figure 2-3 illustrates a series of commands stored in the
command history buffer.

Top of Buffer

DATE
AVAIL
FORMAT DEVICE DFO:
NAME EMPTY QUICK

CD DFO:
MAKEDIR Testfile
CD TESTFILE

Bottom of Buffer

Figure 2-3. Command History Buffer

Using the Shell 2-7

The exact number of lines retained in the command line buffer varies
depending on the length of the lines actually stored. When the buffer
is full, the oldest lines are removed. You can access lines in the buffer
with the up and down arrow keys:

up arrow Moves backward in the history buffer (earlier lines),
down arrow Moves forward in the history buffer (later lines).

For example, you can copy several .info files from one directory to
another by entering the full command line with the complete path
only once and then recalling the line as many times as necessary,
changing only the file name.

You can also search for the most recent occurrence of a specific
command by entering the command line, or the beginning of it, and
pressing Shift+up arrow (or Ctrl+R). For example, if you enter DIR
and press Shift+up arrow, you are returned to the last command
entered to perform a DIR of any directory. Pressing Shift+down
arrow goes to the bottom of the command history buffer, leaving the
cursor on a blank line.

Copying and Pasting
You can copy and paste information from one console window, such as
a Shell or ED window, to the same or another window. This is the
only Workbench-style mouse operation performed in Shell windows,
except for within the ED and MEmacs text editors. Figure 2-4
illustrates copying and pasting from the Shell window to the ED
window.

2-8 Using the Shell

Highlighted text
(Right Amiga+C
to copy)

d ila to r y ,
w Monitors (dir)

&iUTw« (dir)
" BBS&rtwrs (dir)

Printers (dir)
Keynips (dir)

clipboard.device
DOSDrivers.info
Kkkstart
Monitors, info
MstscrtpUnit.ps

OataTypeMnfo
Keycaps,m
nfn.device
paraH ei.device
printer.device
scaia,device
systeft-configuration

Insertion point
(Right Amiga+V
to paste)

Figure 2-4. Copy and Paste

Use the mouse to highlight the area of text to be copied and pasted.
Highlight the text to be copied by moving the pointer to the beginning
of the text area, holding down the selection button, and dragging the
mouse pointer to the end of the desired text. Release the selection
button and press Right Amiga+C. The highlighted area is copied into
the Clipboard said the area is unhighlighted. The text you copied can

Using the Shell 2-9

be repeatedly pasted into any application window that supports
reading text from the Clipboard, such as the Shell, ED, and MEmacs.

To position the cursor where you want to paste the text, move the
mouse pointer to that location and click. Press right Amiga+V to
paste the text.

Note If a block of text is pasted into a Shell window, the
Shell attempts to execute each line of the text as a
command. This can have unpredictable results if the
block of text has embedded returns and is not an
AmigaDOS script.

Working with the Shell
The following are tips for speeding your work with the Shell.

• Use com mand history and com mand line editing

It sometimes takes several attempts using the same command
before getting it right, especially when you are first learning how
to use AmigaDOS. Use the arrow keys to recall a previous
command and change only the part of the line that causes the
problem to eliminate the need to retype the entire line.

• U se a liase s

Defining short aliases for commands you use often is another
time-saver. It also eliminates the need to remember a long and/or
complex series of options. For complete instructions, see the
ALIAS command in Chapter 6.

• Omit unnecessary keyw ords

For clarity, AmigaDOS command names and keywords
throughout this book are often shown although they are optional.
When you learn a command's format, however, you seldom need
to include optional keywords.

2 -1 0 Using the Shell

• Do not use capital letters

Command names, keywords, and assigned directories are shown
in all upper case letters throughout this manual even though
AmigaDOS is case-indifferent. This is done to distinguish the
keywords from the file names and other information on the
example command line. There is no need to use capitalization,
except in commands that create a file or directory whose name
you want to appear capitalized.

• Use im plied CD

This allows you to leave out the CD command, saving three
keystrokes. Enter the only directory name, path, colon, or slashes
at the prompt to change directories. For more information about
changing directories, see the CD command in Chapter 6.

Chapter 3

Working With AmigaDOS

AmigaDOS stores information in the same hierarchical structure as
Workbench. AmigaDOS commands have specific rules that you must
follow when creating scripts and programs to run on your Amiga.
You must be familiar with the terms specific to the file system and
with AmigaDOS command concepts to successfully use AmigaDOS.
This chapter describes the following:

• Managing files, directories, and disks
• Command line basics
• Types of commands
• Command structure
• Special characters
• Running programs
• Refining your AmigaDOS environment

Specific commands are fully described in Chapters 6 and 7 of this
manual.

Managing Files, Directories, and
Disks
In order to use AmigaDOS to access information, you must know
where that information is located. On an Amiga, all information is
stored in a system of directories and files. This is the same system
used by the Workbench, only the method of working with it is
different. Most notably, you do not use icons to manipulate the files
and directories. See the Workbench User's Guide for detailed
information about the Amiga file system and the use of common

3-2 Working With AmigaDOS

commands. Use this section to review the following AmigaDOS basic
concepts:

• File system terms
• File management
• Naming conventions
• Keywords

File System Terms
The following are the main elements of the AmigaDOS file system:

Device

Partition

Volume

Directory
Root Directory

Subdirectory
File

A physical device, such as a disk drive or printer, or a
software (logical) device, such as RAM: or the printer
device PRT:.
A hard disk or part of a hard disk that AmigaDOS treats
as a separate device.
A particular disk or subdivision of a hard disk that
AmigaDOS treats as a separate device. Floppy disks
and hard disk partitions are volumes.
Equivalent to a drawer in Workbench.
The top of the filing system for a given volume; the
directory that contains all other directories.
A directory that is contained within another directory.
A named collection of data.

Path The series of device, directory, and subdirectory
names that uniquely specifies a particular file and its
location.

File Management
AmigaDOS stores information on a device in a file system, which is an
organization of directories, subdirectories, and files. Directories and
files are arranged in a hierarchical system often referred to as a tree.
The branches are directories, which can include subdirectories. At
the ends of the branches are the files, unless the directory is empty.
Figure 3-1 illustrates a directory tree.

Working With AmigaDOS 3-3

Figure 3-1. Example Directory Tree

Devices
Devices include logical devices and the hardware associated with your
Amiga, such as floppy disk drives, hard disk drives, the Ram Disk,
RAD:, and peripheral devices. Information stored on these devices
can be accessed using a variety of names.

To access files on a particular volume, you can refer to the volume by
its volume name, such as Workbench:, or its device name, such as
DFO:. Use the names interchangeably; however, you must always
include the colon (:) after the name. When you refer to a disk by
volume name, the system searches all the available drives for the
volume. If it cannot find a volume of that name, a requester asks you
to insert the volume. When you refer to the disk by a particular
device name, the system uses whatever volume is inserted in that
device.

3-4 Working With AmigaDOS

AmigaDOS has standard names assigned to peripheral devices that
are attached to the various ports, as well as to various logical
(software) devices. Generally, these devices are used for output, such
as copying a file to a printer. The standard device names are:

SYS: Represents the volume on which the Amiga looks for its basic
disk-based resources, such as C: and LIBS:.

PAR: Represents any device, usually a printer, that is connected to
the parallel port. If you copy a file to PAR:, it is sent to the
device attached to the parallel port. Output directed here is
not modified by any driver software.

SER: Represents any device connected to the serial port, such as a
printer or a modem. Output directed here is not modified by
any driver software.

PRT: Represents the printer. Output to PRT: goes through the
selected printer driver and to the serial or parallel port as
specified in the Printer editor in the Prefs drawer.

CON: Represents a console, which uses a window to accept typed
input and display text output. The Shell window is one kind of
console window.
Represents the current console window. An asterisk (*) can
also be used in place of CONSOLE:.
Represents a dummy device commonly used to prevent
output from appearing on the screen. All output sent to NIL: is
discarded.

RAM: Represents the Ram Disk, which is a portion of the Amiga’s
internal memory that can be used as a storage device. All
information in RAM: is lost if the Amiga is rebooted or turned
off.

RAD: Represents a special kind of Ram Disk that is only lost if the
system is turned off, but not when rebooted. Refer to
Appendix C for detailed information.

DFO: Represents the Amiga's main internal floppy drive from which
the Amiga attempts to boot if there is no other bootable device
available.

CONSOLE:

NIL:

Working With AmigaDOS 3-5

Directories
Directories are the AmigaDOS equivalent to drawers in Workbench.
They allow you to group and classify related files. Each file on a disk
is located in a directory. An empty, formatted disk contains one
directory, the root directory. If you create a file on an empty disk,
that file resides in the root directory. If the file has an icon attached
to it, the icon appears in the disk window.

Directories can contain other directories, called subdirectories. The
Amiga supports an arbitrary number of nested directories (directories
within directories).

Files
A file, the basic unit of storage on a computer, is an organized
collection of information. All the programs and any permanent data
that a program uses or produces are files. Project icons represent
data files. Data files contain the information created or used by a
program, such as text, graphic, or spreadsheet files.

.Info Files
Another type of file used by the Amiga is a .info file (pronounced dot
info file). The .info files contain the icons that appear on the
Workbench screen. Every file or directory that has an icon also has a
corresponding .info file. In addition to storing the graphics and
position data for the icon image, a .info file contains any Default Tool
or Tool Type information entered into the icon's Information window.

When working through the Shell, AmigaDOS does not automatically
associate .info files with the corresponding files or directories. For
example, if you use the COPY command to copy the Clock file from
the Utilities directory to the System directory, the Clock.info file is
not copied with it like it is when you drag the Clock icon from one
drawer to another in Workbench. In AmigaDOS, to be sure the Clock
icon appears in the System drawer, you must also copy the Clock.info
file.

When you change icon images by copying .info files, you need to copy
an icon of the same type as the item it represents: Tool, Project,
Drawer, Disk, or Trashcan. If the icon's type does not match the type

3-6 Working With AmigaDOS

of file it represents, it may not open from the Workbench. Icon type is
displayed in the icon's Information window and can be changed with
the IconEdit program.

Each disk icon has a corresponding disk.info file. If you delete the
disk.info file, a default disk icon automatically replaces the previous
icon.

Naming Conventions
The following naming conventions apply to file and directory names:

• Names can be up to 30 characters long and can contain upper
case letters and any punctuation marks that are not reserved.
Workbench file and drawer names can only be up to 25 characters
long to accommodate a possible .info extension.

• Colons (:) and slashes (/) are reserved and cannot be used in file or
directory names. Semicolons (;), asterisks (*), parentheses (()),
question marks (?), back apostrophes C), number or pound signs
(#), square brackets ([]), angle brackets (< >), tildes (~), vertical
bars (|), dollar signs ($), double quotation marks ("), and percent
signs (%) are not reserved; however, we recommend that you do
not use these characters in your file or directory names because
they have special meaning in AmigaDOS.

• Capitalization used in file names is preserved even though
AmigaDOS is not case-sensitive. The name is recognized by the
characters; for example, TextFile is treated the same as textfile.

• Spaces in names are allowed, but not recommended when
working through AmigaDOS. If you do use names with spaces,
the entire path containing the name must be enclosed in double
quotation marks. We recommend using an underscore (_) as a
separator rather than a space.

Note If you use spaces in file names, do not place one at the
beginning or end of the name. This space is invisible
when displayed and easily overlooked as part of the file
name. AmigaDOS does not recognize the name if such
a space is not entered.

Working With AmigaDOS 3-7

Note If you use spaces in file names, do not place one at the
beginning or end of the name. This space is invisible
when displayed and easily overlooked as part of the file
name. AmigaDOS does not recognize the name if such
a space is not entered.

Keywords
A keyword is a special word recognized by an AmigaDOS command.
AmigaDOS commands use keywords to identify arguments or to
specify options. If there is a conflict between a name and a command
keyword, enclosing the name in quotation marks ensures that it is
interpreted as a name. For example, if you have a directory named
Files and you want to display information about all of its files and
subdirectories, you might use the command LIST Files. However,
this is ambiguous because LIST has the keyword FILES. To avoid
this, enter:

LIST "Files"

Command Line Basics
Effectively using a Command Line Interface, such as the Amiga Shell,
requires that you understand concepts unique to this method of
working with your computer. These include:

• The distinctions between files, programs, commands, and scripts
• The search path
• The current directory

Files, Programs, Commands, and Scripts
Files, programs, commands, and scripts are named collections of data
that can be stored in the computer's memory or on a disk drive.
These concepts can be confusing because the meanings of the terms
often overlap.

3-8 Working With AmigaDOS

Files
Programs, commands, and scripts are all files. Files can be stored on
disk or in the Amiga's memory, although certain kinds of files are
customarily stored in specific locations.

Programs
A program is a file that the computer executes to accomplish some
task. Software that you buy for the Amiga are mostly programs.
Workbench programs are called tools, utilities, or editors. A file that
is not a program is typically a data file, which contains information a
program can use, such as text or graphics. Programs can be stored
anywhere.

Commands
A command is a type of program. The term command usually refers
to programs that are executed through a command line such as the
Shell, especially those programs that come with a computer as part of
the operating system and perform some basic function. The programs
detailed in Chapter 6 of this book are the AmigaDOS commands.
AmigaDOS commands that are not Internal (built into the Shell) are
stored in the C: directory.

The term command can also refer to a specific instance of that
program's invocation, including its arguments, if any. In this manual,
the term command line is used to indicate a command program's
invocation; for example, "The command line TYPE S 2User-startup
is an example of the TYPE command." The command must always be
the first thing on the command line.

Scripts
A script is another type of program that is a text file containing a
series of commands comprising the program. You can view and edit a
script with a text editor. A script typically performs some simple task
that cam be modified by editing the script.

In this manual, the term script refers to scripts of AmigaDOS
commands. AmigaDOS scripts are customarily stored in the S:

Working With AmigaDOS 3-9

directory. ARexx programs are also called scripts, although they can
be referred to as macros or programs; these scripts are also stored in
the S: directory using the assignment REXX:. Some computer
systems refer to scripts as batch files.

Search Path
When using the Shell, the Amiga must know where to look for the
commands you want to use. The Shell has a search path, which
allows you to enter commands without providing the full path. The
search path is a series of directories that AmigaDOS searches to find
commands that are entered without paths.

The default search path includes the current directory, C:, and
several other directories specified in the standard Startup-sequence.
You can add other directories in which you keep frequently-used
programs by using the PATH command or by using multiple
assignments with the ASSIGN command. There is, however, a
significant difference between these two methods. Directories added
to the search path with the PATH command are local to the Shell in
which you added them and to any sub-Shells launched from that
Shell. Directories added through multiple assignments with the
ASSIGN command are global to the whole system.

When you enter something in the Shell, AmigaDOS looks through the
directories in the search path for a command of that name. It
searches the directories in the order they appear in the path until it
either finds the command or reaches the end of the path list. When a
command cannot be found in any of the search path directories, the
Shell displays an Unknown command message, as illustrated in
Figure 3-2.

3-10 Working With AmigaDOS

1> frob

frob: Unknown command

Figure 3-2. Search Path

Note AmigaDOS uses the search path to find commands
only. You must include a full path to any files referred
to in a command's arguments.

Current Directory
The current directory is the Shell's current location in the filing
system hierarchy, similar to the Workbench's current window. The
name of the current directory is displayed in the default Shell prompt
so that you always know where you are. The following properties
apply to the current directory:

• Each Shell has its own independent current directory.
• A Shell has only one current directory.
• The current directory is always the first directory in the search

path.
• The path up to and including the current directory is assumed

and does not need be included in a path to a particular command
that is within the current directory.

• The current directory is the default directory, the directory on
which a command operates, if no other directory is specified.

Changing the current directory, like adding directories to the search
path, is a way to reduce the amount of typing necessary to specify a
command. Often you need to perform several operations within a
certain directory, such as copying, renaming, and deleting files. You

Working With AmigaDOS 3-11

can avoid entering the full path for each file by changing the current
directory to that directory in which most of the files are located.

Types of Commands
AmigaDOS has both disk-based and internal commands.

Disk-based commands must be loaded from a disk before execution.
On systems with hard disks, the disk-based commands are always
accessible to the system since they are automatically loaded when
invoked. On a floppy-only system, these commands are read from a
floppy disk that must be inserted whenever they are called.

Internal commands reside in the Shell, which is in ROM (Read Only
Memory). The system accesses internal commands immediately.

Some AmigaDOS commands are essentially the same as menu items
or programs on the Workbench. These commands and the
corresponding Workbench equivalent are shown in the following
table:

Command Function Workbench Counterpart

CD Change the current
directory

Select another window/icon

COPY Copy a file, directory, or
disk

Copy menu item

DATE Set the correct date and
time

Prefs/Time editor

DELETE Delete a file or directory Delete menu item
DIR Show files in a directory Show All Files menu item
DISKCOPY Copy a disk Copy menu item
ENDSHELL Close a Shell window Select Shell window close

gadget
FORMAT Format a disk Format Disk menu item
INFO Show information on all

disks
Observe disk window title bars

3-12 Working With AmigaDOS

Command
(cont'd)

Function
(cont'd)

Workbench Counterpart
(cont'd)

LIST Show files, with sizes, etc. View By Name menu item
MAKEDIR Make a new directory New Drawer menu item
NEWSHELL Open a new Shell window Open Shell icon
RELABEL Rename the disk volume

in the specified drive with
the specified name

Rename menu item

RENAME Rename a file or directory Rename menu item
SETCLOCK Save the date and time PrefsyTime editor
TYPE Display the contents of a

text file
MultiView program

AmigaDOS Command Structure
Every AmigaDOS command has a specific format and syntax that
must be used for the system to accept and act on the command. The
general rules for working with AmigaDOS commands are few, but
absolute:

• A legal command or program name must appear first on the
command line. The full path to the command is not necessary if
the command is in a directory on the search path.

• Arguments are separated from the command and from each other
by spaces; a single space is sufficient, but additional spaces are
allowed. No punctuation, other than that specifically needed in
the command, should be used.

• AmigaDOS is not case-sensitive. Any mixture of upper and lower
case can be used on the command line, however, case is ignored.
Capitalization given in file and directory names is preserved.

Working With AmigaDOS 3-13

• Except where noted, when a path or string argument contains a
space, the entire path or string must be enclosed in double
quotation marks ("). For example:
1> ECHO comment TO Adisk:Text/Comment
1> ECHO "A comment" TO "My Disk:Text/Comment"

• The maximum length of a standard Shell command line is 512
characters.

A sample of the structure of an AmigaDOS command line is
illustrated in Figure 3-3. It consists of the COPY command followed
by two arguments.

FROM argument TO argument

command optional keywords
I— names — |

option

1 . E x t r a s : P r a f O COPY FROM ScraanM oda S c ra a n M o d a . i n f o TO S Y S :P ra fa CLONE

Prompt Command line

Figure 3-3. Example Command Line

An argument is an additional piece of information the command uses,
such as a file name or option. Command arguments are similar to
icon Tool Types on the Workbench. Depending on the command,
arguments can be optional or required. Figure 3-3 illustrates the
following points about arguments.

• Keywords for AmigaDOS commands are generally full words or
simple abbreviations, in this example, FROM and TO.

• An argument can consist of more than one term; in the example, a
file name argument accepts two names at the same time:
Screenmode and Screenmode.info.

• Some arguments have an identifying keyword, which can be
optional or required.

• When optional keywords are omitted in a multiple-argument
command, the arguments must appear in the order shown by the
command template.

3-14 Working With AmigaDOS

Special AmigaDOS Characters
There are several characters that have special meanings when used
in AmigaDOS. The functions of special characters include the
following:

• Specifying paths
• Pattern matching
• Redirecting command input and output

It is important when using AmigaDOS to remember the various
special functions that characters can have. Note that in different
contexts the same character can have different effects or have no
special effect. If a command that appears correct produces
unexpected results, check to see if any character in the command has
a special function.

Command Line Characters
The colon and slash characters are reserved by AmigaDOS for
specifying paths. In file requesters, on the command line, or in
scripts these characters are used only to separate components on the
path line.

Colon (:)

Colons are used to designate device names (DFO:), volume names
(Workbench:), and assigned directories (SYS:). There are no spaces
before the colon, unless it is the first character in the path, or
between the colon and subsequent file or directory names in a path.
Used by itself, the colon represents the root directory of the current
volume. The following are examples of legal uses of the colon:

1> DIR DEVS:
1> DIR DFO:Pictures
1> DIR :Prefs
1> DIR :

Working With AmigaDOS 3-15

Slash (/)

Slashes are used within paths to separate directories and file names.
For example:

1> LIST Reports/Salesreps/Eastern
The three directory levels are separated by slashes; this example lists
the Eastern subdirectory.

Entering a single slash moves the current directory structure up one
level. For example, if Reports/Salesreps/Eastem is the current path,
entering the following:

1> CD /
changes the directory path to Reports/Salesreps. Using two slashes
moves up two levels, and so on.

Double quotation mark (")

The double quotation mark by itself does not have any special
meaning. However, you may occasionally need to use double
quotation marks around a command argument for the command to
work properly. Since AmigaDOS uses spaces as an argument
separator, you must enclose an argument (such as path) that contains
spaces in double quotation marks to keep the Shell from interpreting
the parts of the argument as separate arguments. For example, the
following is incorrect:

1> COPY Ram Disk:foo TO SYS:Otherdir
It produces an error message because there is a space in the path.
The command indicates that there are two items to be copied, when
only one is intended. Enclosing the path in quotation marks forces it
to be treated as a single argument:

1> COPY "Ram Diskifoo" TO SYS:Otherdir
Using double quotation marks with nothing between them is a quick
way to reference the current directory. For example:

1> COPY DFOipublic.library TO ""
If the current directory is LIBS:, the public.library file is copied there.

3-16 Working With AmigaDOS

Plus (+)

The plus sign, when entered with the RUN command, concatenates
several commands entered on subsequent lines into a single command
line. For further information and examples, see the RUN command
in Chapter 6.

Question mark (?)

One of the special uses of the question mark is to display a
command's template. The template is an online reminder of the
command's arguments. To display a specific command's template,
enter the command name followed by a space and then the question
mark, with no other arguments:

1> TYPE ?
FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S:

The Shell displays the template. It also allows you to enter the
arguments for the command with which you have used the question
mark. Enter arguments for the command after the colon. Be sure to
enter only the arguments and keywords needed before pressing
Return.

Pattern Matching
You can work on several files or directories with one command using
pattern matching. Special wildcard characters are used in command
arguments to match characters in the file names. For example, use a
wildcard character in a single command for copying or renaming all
the files beginning with a specific letter, ending with the same
extension, or residing in the same directory.

Wildcard Characters
The following list shows each wildcard character and the type of
match it makes. In the list, a <p> indicates that either a single or
multiple character string immediately adjacent to the wildcard is
matched. To match a literal wildcard character, you must escape its
wildcard meaning by prefacing it with an apostrophe ('). For
example,'?, matches ?, and '' (two single apostrophes) matches '.

Working With AmigaDOS 3-17

?

#<P>
<p1>l<p2>

~<P>
(<p1xp2>...)
[<p>-<p>]
%

'<p>

Matches any single character.
Matches zero or more occurrences of <p>.
Matches if either <p1> or <p2> matches.
Matches everything but <p>.
Parentheses group items together.
Square brackets delimit a character range.
Matches the null string (no characters).
When <p> is wildcard character, matches that character.

The following examples indicate the matches that can be made using
the entry in the left column.

A?B

A#BC

ABC#?

#?XYZ

A(BIC)D
- (XYZ)
- (#?XYZ)
A#(BC)

A(BIDI%)#C

[A-D]#?
#?XYZ?

Matches any three character names beginning with A and
ending with B, such as AcB, AzB, and a3b.
Matches any name beginning with A, ending with C, and
having any number of Bs in between, such as AC, ABC,
ABBC, ABBBC.
Matches any name beginning with ABC, regardless of what
follows, such as ABCD, ABCDEF.info, or ABCXYZ.
Matches any name ending in XYZ, regardless of what
precedes it, such as ABCXYZ and ABCDEFXYZ.
Matches ABD or ACD.
Matches anything but XYZ.
Matches anything not ending in XYZ.
Matches any name beginning with A followed by any number
of BC combinations, such as ABC, ABCBC, and ABCBCBC.
Matches ABC, ADC, AC (% is the null string), ABCC, ADCC,
ACCC, and so forth.
Matches any name beginning with A, B, C, or D.
Matches any name ending with XYZ?

3-18 Working With AmigaDOS

The combination of #? matches any characters and is used most often.
#? is equivalent to the * wildcard used by other computer systems.
For example, to delete all the .info files in the Picture directory, enter:

1> DELETE Picture/#?.info

Caution Be careful not to accidentally delete the contents of a
disk when using #?.

Redirection
Redirection can change input or output to a specific file or device
(such as a printer, modem, or logical device). When working in the
Shell, the keyboard is the source of command input and the current
Shell window is the destination for output. You can redirect input
and output using the left angle bracket, right angle bracket, and
asterisk characters.

Angle Brackets
A redirection argument consists of either the < or > symbol followed
by a file name or device name. The angle bracket must be preceded
by a space, but no trailing space is necessary.

For some commands, the redirection characters can replace the
keywords TO and FROM, depending on the command's syntax.

You can only redirect input or output on the command line in which
the redirection characters appear. AmigaDOS applies the default
input and output sources for any subsequent commands without
redirection.

Right Angle Bracket (>)

The right angle bracket redirects the console output of a command to
the destination pointed to by the bracket. The console output is the
text that the command prints in the Shell window when executed.
For example,

1> DIR >Testfile DFO:

Working With AmigaDOS 3-19

sends a directory listing of DFO: to a file in the current directory
called Testfile. Testfile is created if it does not already exist and it
contains the directory listing as ASCII text. The directory listing is
not displayed on the screen.

Only the console output of a command is redirected, not the data on
which the command works. For example,

1> COPY >Log Picdir TO PicsArchive: ALL
copies all the files in the Picdir directory to the PicsArchive disk,
sending a list of the copied file names to the Log file.

Left Angle Bracket (<)

To change the source of a command's input from the keyboard to a
file, use the < symbol. However, a question mark (?) must also be
used as a separate argument on the command line. The question
mark instructs the command to accept input; it is not a wildcard
character in this context. The following example creates a file and
then uses the contents of the file as the argument for a command:

1> ECHO tomorrow TO Datefile
1> DATE ? <Datefile

The ECHO command creates a file called Datefile containing the
word "tomorrow". The DATE command accepts the contents of
Datefile (the word "tomorrow") as if it were entered at the keyboard.
This sets the system date 24 hours ahead.

Double Right Angle Brackets (»)

Redirect output and append material to an existing file using two
output symbols (») with no spaces between them. For example:

1> Postscript >>Laser/Letter
executes the program Postscript, adding its output to the end of the
Laser/Letter file.

Asterisk (*)

An asterisk refers to the current Shell window. However, to avoid
confusion with other uses of the asterisk, we recommend using
CONSOLE:, which is the synonym for *. The asterisk can be used as

3-20 Working With AmigaDOS

a FROM or TO argument or as a redirection file name (the source of
input or the output destination).

Pressing Ctrl+\ restores input/output to the default source. For
example:

1> COPY * TO Screenfile
or
1> COPY CONSOLE: TO Screenfile

copies all subsequent text typed in the current window to the file
called Screenfile until you press Ctrl+ \ .

Ctrl+\ is also used to close a Shell window. Be careful not to press
this key combination twice when you want to end the redirection
since it also closes the Shell window.

Running Programs
Most programs can be run from both the Workbench and the Shell.
To run a program from the Shell, you usually enter the program
name at the Shell prompt. (If the program file is not in the search
path, you must specify the complete path to the file.) This tells
AmigaDOS to load and execute the program.

Most programs allow you to specify additional information on the
command line after the program name, such as the name of a file to
load or startup options. These additional items are its arguments.
Refer to a program's documentation to determine the arguments it
allows and how they should be entered.

For example:
1> MEmacs

loads and runs the MEmacs editor. Adding an argument:
1> MEmacs S :User-startup

loads and runs MEmacs, automatically opening the User-startup file
in the S: directory as the file to begin editing.

1> CLOCK WIDTH 200 HEIGHT 100 SECONDS

Working With AmigaDOS 3-21

loads the Clock with a specified size of 200 pixels by 100 pixels and
the SECONDS option turned on.

Often this argument-passing ability is provided as a convenience,
allowing you to specify directly on the command line what might
otherwise require several menu operations. However, many
programs, especially those that can only be run from a Shell, require
that file names or other arguments be specified on the command line
with the program name.

Running Programs in the Background
Another way to enter a program name is with the RUN command.
RUN loads and runs a program in the background. The Shell prompt
returns after the program is opened.

For example, entering:
1> MEmacs

opens the MEmacs editor, but you cannot enter any additional
commands or close the Shell window until you exit MEmacs.

However, entering:
1> RUN MEmacs

opens the MEmacs editor and returns the Shell prompt so that you
can enter additional commands.

When a program is invoked with RUN, a process number is assigned
to it and a message indicating the new process number is displayed,
such as [CLI 2].

Any output that the program generates appears in the originating
Shell window.

You cannot close the Shell window if any programs launched from
that window are still running. For example, if you open MEmacs
through the Shell, you cannot close the Shell window until you exit
MEmacs. Avoid this by using the NIL: device. See Chapter 8 for an
example.

3-22 Working With AmigaDOS

Refining Your AmigaDOS
Environment
The following tips help you to set up your AmigaDOS environment to
suit your particular needs.

• Custom ize your Shell prom pt

Changing the color, for example, of the prompt string with escape
codes makes the prompt easier to distinguish from the rest of the
command line and the output that your commands produce. This
helps you keep track of the process number and current directory
that are normally part of the prompt. For more information on
how to change your Shell prompt, see the PROMPT command in
Chapter 6 and the example in Chapter 8.

• C reate a logical directory structure and use m eaningful
nam es

Because gaining access to something requires knowing where it
is, you should organize your disks and directories in a logical way,
with names that reflect their contents. However, do not create
directory structures that are heavily nested without good reason.

• Avoid using spaces and other special characters in nam es

Characters with special meaning in AmigaDOS, such as # and
are allowed in names, but can cause problems when used on the
command line. Use a period (.), underscore (_), or capital letters
instead of spaces to separate words in a name: "Anim.file,"
"Anim_file," or "AnimFile" rather than "Anim file."

• Nam e related files consistently

Giving related file names a common extension or sequential
numbering simplifies using pattern matching when processing
files.

Working With AmigaDOS 3-23

• Use assigned nam es in paths

Assigned names allow you to type a short, easy-to-remember
name rather than a long path. For example, it is quicker to type
ENVARC: than SYS:Pre£s/Env-archive. Make your own
assigned names for directories you use often and for deeply nested
directories.

• Extend the search path

If you have a variety of often-used commands or programs, adding
their directories to the search path with PATH or ASSIGN makes
accessing them easier.

• Experim ent

The best way to learn how AmigaDOS works is to experiment.
Provided that you use caution with potentially destructive
commands, such as pattern-matching DELETES, you can
experiment freely.

Chapter 4

Using the Editors

A text editor or word processing program is necessary for creating or
editing text files and script files. Amiga Workbench software comes
with three text editors. This chapter describes them in the following
order:

. ED
• MEmacs
• EDIT

Each of the Amiga editors can be used separately for editing
AmigaDOS scripts and programs; ED and MEmacs can be used for
creating these files. If you are comfortable with the UNIX Emacs
editor, you may prefer using the MEmacs editor. If you need to edit
files containing binary code or you need to edit files too large to fit
into memory, use EDIT. If you are not familiar with any of the
editors, we recommend that you use the ED editor.

Each editor has the basic functionality of a word processor, however,
none of these editors support style formatting options, such as italics,
page numbering, or different fonts. If you need these features, you
can purchase third party word processing software containing such
features for your Amiga.

ED
ED is a full screen ASCII text editor that uses menus and function
keys to access its features. It is easy to use and is suitable for editing
scripts, startup files, MountLists, and other simple files. Use either a
mouse or the keyboard to perform operations with ED. Although

4-2 ED

ED's menus are preprogrammed, when you are familiar with the
program, you can reconfigure them as needed.

Note ED does not accept files containing binary code. To edit
this type of file, use EDIT or MEmacs.

The bottom line of the ED window is the status line used for
displaying messages, prompts, and commands. Error messages
displayed on the status line remain until you enter another ED
command. Figure 4-1 illustrates the ED window showing the status
line.

Status
Line

Figure 4-1. ED Window with Status Line

The format for ED is the following:

ED [FROM] <filename> [SIZE <n>] [WITH <filename>]
[WINDOW <window specification:^ [TABS <n>] [WIDTH | COLS
<n>] [HEIGHT | ROWS <n>]

The FROM argument specifies the source file to be edited. This
argument is required, but the FROM keyword is optional.

ED 4-3

The SIZE argument changes the ED buffer size. ED has a default
text buffer size of 40,000 bytes. For example:

1> ED Script SIZE 55000
increases the size of the buffer to 55,000 bytes.

The WITH argument specifies an ED command file that can contain
any sequence of ED extended mode commands. When WITH is
specified, ED executes the commands contained in the command file.
The WITH argument's keyword is required if you use WITH.

The WINDOW argument specifies the console type, such as
RAW:0/0/640/256/EdWindow or CONSOLE:. The WINDOW
argument's keyword is required if you use WINDOW.

TABS sets the tab stop interval, which is the number of spaces to the
right that the cursor moves when you press the Tab key. The default
value for TABS is 3.

The WIDTH and HEIGHT arguments adjust the size of the ED
window by specifying the number of characters to display horizontally
and vertically. By default the ED window is 640 x 200 pixels or
approximately 88 characters wide by 21 lines high.

Starting ED
Start ED from a Shell or with the Workbench Execute Command
menu item. Open ED at the prompt by entering ED and a new or
existing file name, as follows:

1> ED <filename>
where <filename> is the name of an existing file or a new file to be
used for saving your work. If the file name specified cannot be found
in the current directory, ED opens a blank window and displays the
message Creating new £±le.

4-4 ED

Using ED
All ED commands have key sequences and many are available
through menus. You can enter ED commands in either of the
following ways:

1. By choosing the command's menu item.

2. By typing in the command's key sequence and pressing Return.

In addition, you can use the mouse to perform some commands, such
as those that control cursor movement.

You can work on files in ED with the following two command modes:

Immediate Commands are executed as soon as typed. ED opens in
immediate mode.

Extended Commands are not executed until you press Return or Esc.

Immediate Commands
In immediate mode, ED executes commands right away. Specify an
immediate command by pressing a single key or Ctrl+key
combination or by using the mouse. All immediate commands have
corresponding extended versions.

Immediate commands control the following:

• Cursor movement
• Text scrolling
• Text insertion
• Text deletion
• Repetition of commands

Moving the Cursor in Immediate Mode
The cursor can be positioned anywhere in text by moving the pointer
to the desired spot and clicking the selection button. To move the
cursor with the keyboard, use the arrow keys, Tab, and Ctrl+key
combinations.

ED 4-5

Note In ED, the Tab key only moves the cursor. It does not
insert Tab characters or spaces in a line.

Move the cursor one position in any direction by pressing the
appropriate arrow key. If the cursor is on the right edge of the
screen, ED scrolls the text to the left to display the rest of the line.
ED scrolls the text vertically one line at a time and horizontally ten
characters at a time. You cannot move the cursor beyond the left
edge of the line. If you try to move the cursor beyond the top or
bottom of the file, ED displays a Top of File or Bottom of File
message.

Additional key combinations that control cursor movement are:

Shift+up arrow
Shift+down arrow
Shift+left arrow

Shift+right arrow
Ctrl*]

Ctrl+E

Ctrl+T
Ctrl+R
Tab

Top of the file.
Bottom of the file.
Left edge of the ED window (regardless of the margin
setting).
End of the current line.
Right edge of current line (if cursor is already there, it
is moved to the left edge).
Start of the first line on the screen (if cursor is already
there, it is moved to the end of the last line on the
screen).
Start of the next word.
Space following the previous word.
The next tab position (multiple of the TABS value;
3 by default).

If your file has more lines than can fit in the ED window, you can
scroll through the file vertically. Scroll one line at a time by pressing
the up or down cursor key to move in the corresponding direction.
Move the text in jumps by pressing:

Ctrl+D
Ctrl+U

Moves 12 lines down through the file.
Moves 12 lines up through the file.

4-6 ED

These commands do not move the cursor position in the window; they
redraw the text in the window with the new line at the cursor
position.

If something disturbs your screen, such as an alert from another
program appearing in the ED window or message remarks in the
status line, press:

Ctrl+V Refreshes the window display.

Inserting Text in Immediate Mode
Any characters typed in immediate mode are inserted at the current
cursor position and the cursor is shifted to the right. Any characters
to the right of the cursor are shifted to make room for new text. If the
line is wider than the width of the window, the window scrolls to the
right to show what you are typing. If you move the cursor beyond the
end of the line, ED inserts spaces between the end of the line and any
new characters inserted.

There is maximum limit of 255 characters in a line. If you add more
characters, ED displays a Line Too Long message.

To split the current line at the cursor, press Return. Any text to the
left of the cursor remains on the original line. All text under and to
the right of the cursor moves down onto a new line. Pressing Return
at the end of the line creates a new blank line.

Deleting Text in Immediate Mode
ED has no type over mode. To replace a word or line, you must delete
the existing words and insert new information with the following keys
and key combinations:

Backspace Deletes the character to the left of the cursor.
Del Deletes the character highlighted by the cursor.
Ctrl+O If the cursor is over a space, all spaces up to the next

character are deleted. If the cursor is over a character, all
characters up to the next space are deleted.
Deletes all characters from the cursor to the end of the line.Ctrl+Y

ED 4-7

When text is deleted, any characters remaining on the line shift to the
left and any text beyond the right edge of the screen becomes visible.

Changing Case in Immediate Mode
You can change the case of text by positioning the cursor and pressing
Ctrl+F. If the letter is lower case, it becomes upper case and vice
versa. Ctrl+F does not change non-alphabetic characters or symbols.

After you press Ctrl+F, the cursor moves to the right. You can hold
down Ctrl+F to repeat the command until you change all the letters
on the line.

Extended Commands
In extended mode, commands are displayed on the command line— or
status line— at the bottom of the window. ED does not execute these
commands until you press Return or Esc. If you use Esc to execute
extended commands, ED remains in extended mode. If you use
Return to execute extended commands, ED returns to immediate
mode.

Extended commands manage the following:

• Program control
• Cursor movement
• Text modification
• Block control
• Searching and exchanging text

To enter extended mode, press Esc. An asterisk appears as a prompt
in the status line. Extended commands consist of one or two
characters. Multiple extended commands can be typed on a single
command line by separating them with a semicolon. Commands can
be grouped together for ED to repeat automatically. Use Backspace
to correct mistakes.

You can also execute commands through the programmable menu
and function keys. Reconfigure the menus and functions keys by
assigning a command to the key or menu item of your choice as
described on page 4-21.

4-8 ED

Using String Delimiters
In some cases, commands require arguments, such as a number or a
text string. A string argument for an ED command must be enclosed
in a pair of identical delimiter characters. In unambiguous situations
you may omit the trailing delimiter. Valid delimiters include ", /, \, !,
:, +, -, and %. You cannot use the same delimiter character inside
your string. Invalid delimiter characters include letters, numbers,
spaces, semicolons, question marks, brackets, and control characters.

Using a File Requester
You can also ask ED to use a file requester, allowing you to view the
contents of the drives and directories in your system.

To invoke a file requester for a load or save command, you must place
a question mark (?) before the required string argument. Be sure to
include a space before the question mark (for example, sa ?/Text/).
Normally, when a command is followed by a string, ED treats the
string as the file to be loaded or saved and attempts the operation
immediately. However, the question mark indicates that you want to
specify the file through a file requester. You must still specify a
string after the question mark, but the string becomes the text that
appears in the file requester title bar.

ED Menus
ED has two sets of command menu assignments: default and
expanded. The default menu assignments, as illustrated in
Figure 4-2, are set up by the S:Ed-startup file, which is automatically
executed each time you run ED. The S:Ed-startup file is a command
file of ED extended mode commands, without the Escape characters.
You can edit this file to set up custom menus, as described on page
4-21, or define preprogrammed function key assignments with the Set
FN Key menu item.

ED 4-9

Figure 4-2. Default Menu Assignments

Enabling Expanded Menus
The expanded command menu assignments, as illustrated in
Figure 4-3, can be enabled by renaming or deleting the default S:Ed-
startup file. If ED cannot find a file named S:Ed-startup, it opens
with the expanded set of menus, providing more options.

4-10 ED

Figure 4-3. Expanded Menu Assignments

Rather than deleting your S:Ed-startup file, we recommend that you
rename it as follows:

1. In the Workbench window, go to the Window menu and select
Show All Files.

2. Double-click on the S drawer icon.

3. Click on the Ed-startup icon.

4. Go to the Icons menu and choose Rename.

5. Delete the name in the Rename requester's New Name text
gadget and enter a new name for Ed-startup.

6. Select OK.

You can also create your own customized file of startup options.
Avoid including Quit commands in the S:Ed-startup file since they
can cause ED to quit immediately after opening.

The menu items in both the default and expanded menus have the
same function regardless of which set you use. All of the ED
commands are available through the keyboard using extended mode
commands even if they do not appear in any menu.

ED 4-11

The following sections describe the menu items found in the expanded
menus and their corresponding extended and immediate mode
commands. An ellipsis (...) indicates that an argument is required or
that a menu item opens a requester or prompt.

Project Menu
The following are the expanded Project menu items:

New

Open...

Insert File...

Write Block...

Save

Save As...
Save & Exit

Esc.N.W

Esc.O.P...

Esc,l,F...

Esc,W,B...

Esc.S.A

Esc,S,A...
Esc.X

Creates a new file, replacing the existing
file. The message Edita will be
lost-type Y to confirm: is
displayed. Press any key (except Y) to
abort the command.
Opens a file. Specify the file by entering the
path to the file as a properly delimited string.
(If slashes appear in the path to a file, do
not use the slash as a delimiter.) The
message Edita will be lost-type Y
to confirm: reminds you that you are
replacing the current file.
Inserts a file into the current file. ED reads
into memory the specified file at the point
immediately following the current line.
Writes the currently marked block to a
specified file. ED overwrites any other files
with that name and copies the block to the
file.
Saves the text to the current file, overwriting
the existing text in the file. Use Save As to
save to a different file. SA followed by Q is
equivalent to the X command.
Saves the text to the specified file name.
Exits ED, saving the current file to the
designated file name. ED writes the text it
is holding in memory to the file that was
specified when ED was opened and then
terminates.

4-12 ED

About

Quit

Esc,S,H Shows the current state of the editor. The
screen displays information, such as the
value of tab stops, current margins, block
marks, and the name of the file being
edited.

Esc.Q Exits ED without saving changes. If you
made any changes to the file, ED asks if
you want to quit. If you press Y, ED
terminates immediately without saving the
changes to the file.

Edit Menu
The following are commands used for editing:

Undo Line Esc.U Reverses changes made to the current line.
However, ED cannot undo a line deletion.
Once you have moved from the current line,
the U command cannot undo a change.

Star Block
End Block

Esc,B,S
Esc,B,E

Identify the beginning and end of a block of
text. To specify a block of text to be moved,
inserted, or deleted, place the cursor on the
first line that you want in the block and enter
the BS command. Move the cursor to the
last line that you want in the block and enter
the BE command.
You cannot start or finish a block in the
middle of a line.

Show Block Esc,S,B Redraws the display so the block is at the
top of the screen.

Insert Block Esc,l,B Inserts a copy of the block after the current
line. The block remains defined until you
change the text. Use IB to insert copies of
the block throughout the document.

Delete Block Esc,D,B Deletes a block.
Delete Line Esc,D

Ctrl+B
Deletes the entire line.

ED 4-13

Movement Menu
The following commands move the cursor around the screen:

Top Esc,T

Bottom Esc,B

Go To Line... Esc,M

Next Page Esc,P,D
Ctrl+D

Previous Page Esc,P,U
Ctrl+U

Top of the file; first line of the file is brought
to the top of the window.
Bottom of the file; last line of the file is
brought to the bottom of the window.
Move the cursor to the specified line. Enter
the line number on the status line and press
Return. The line specified is brought to the
top of the window. If no number is given,
the cursor goes to the top of the window.
Go to next page.

Go to previous page.

Search Menu
The following commands let you search through the file for specific
instances of text. You can substitute one pattern of text with another
(search and replace) and have ED request confirmation of (query)
each replace. If the specified text is not found or there are no more
instances of the text, the message Search failed is displayed.
When using the Find and Replace menu commands, ED prompts for
the text strings. Enter the text without delimiters. When using
extended mode, include delimited strings with the command.

Find... Esc,s... Finds the next occurrence of the specified
Find Next string of text. The search starts one

character beyond the current cursor position
and continues forward through the file. If
the string is found, the cursor moves to the
start of the located string. The search is
case-sensitive, unless the Ignore Case
command is used. Find Next repeats the
command.

4-14 ED

Reverse Find...
Reverse Find
Next

Replace...

Global
Replace...
Query-
Replace...

Global Query-
Replace...

Esc,B,F...

Esc.E...

Esc,R,P,
E...
Esc,E,Q...

Esc,R,P,
E,Q...

Searches backwards through the file for the
specified string. This command finds the
last occurrence of the string before the
current cursor position. The search
continues through to the beginning of the
file. Reverse Find Next repeats the
command.
Exchanges one occurrence of text with
another.
In extended mode, enter the strings
enclosed by three delimiters. For example,
to replace the word to with too, enter
"to"too". Specify empty strings by typing
two delimiters with nothing between them. If
the first string is empty, ED inserts the
second string at the current cursor position.
If the second string is empty, ED searches
for the next occurrence of the first string and
then deletes it. Note that ED ignores
margin settings when exchanging text.
Exchanges all occurrences of text.

Searches for the text to be exchanged and
requests verification by displaying
Exchange?. Enter Y to exchange or
another other key to abort.
Searches for all occurrences of the text to
be exchanged and requests verification for
each. Enter Y to exchange or any other key
to abort.

ED 4-15

Settings Menu
The following commands are used for setting up your ED
environment:

Set FN Key... Esc.S.F... Defines the function keys and other
programmable keys. Defining function key
and Ctrl+key commands is similar to
defining menu items. See page 4-15 for
instructions for defining function keys and
an example of the Set FN Key command.

Show FN Key- Esc.D.F
<key>

Displays the setting for the function key
specified by <key>. Enter a space and a
key slot number for <key>.

Reset Keys Esc.R.K Resets the key definitions to the default.
See page 4-16 for a table of special key
mappings.

Right Margin... Esc.S, R... Sets the right margin. Use the SR
command followed by a number indicating
the column position.

Left Margin... Esc,S,L... Sets the left margin. Use the SL command
followed by a number indicating the column
position. The left margin should not be set
beyond the right edge of the screen.

Ignore Case Esc,U,C Specifies a case-insensitive search. UC
instructs all subsequent searches not to
make any distinction between upper and
lower case text. To make searches case-
sensitive again, use the LC command.

Case Sensitive Esc.L.C Specifies a case-sensitive search.

Set FN Key
Set FN Key is used to define function keys and other programmable
keys. There are 57 immediate command key slots ranging from 1 to
57. Any slot number can be redefined and any numbers within the
range that do not appear in the special key mappings on page 4-16
are not defined.

4-16 ED

The following is the syntax for the Set FN Key command:
SF <slot number> /command string/

Define Ctrl+key combinations by substituting a caret (A) and the
other character for the slot number.

Example Script

This example script assigns function keys to cursor control
commands. You can also enter these as a series of extended mode
commands. The Top of File, Bottom of File, End of Page, Next Page,
Next Line, and Previous Line commands are assigned to the FI
through F6 keys, respectively. Quotation marks are used as
d e l im ite r s .

S F i " t "
SF 2 " b "
S F 3 " e p "
SF 4 ” p d "
SF 5 " n "
SF 6 " p "

Special Key Mappings
The following table shows the default key definitions used in the
Reset Keys command:

Slot # Key/Key Sequence Function

1-10 F1 through F10
11-20 Shift+F1 to Shift+F10
21 Shift+left arrow
22 Shift+right arrow
23 Shift+up arrow
24 Shift+down arrow
25 Del
26 Not defined
27 Ctrl+A
28 Ctrl+B
29 Ctrl+C
30 Ctrl+D

Not defined
Not defined
Move to beginning of line
Move to end of line
Move to top of document
Move to bottom of document
Delete character at cursor
Not defined
Insert line
Delete line
Not defined
Move down 12 lines

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57

4-17

Key/Key Sequence
(cont'd)

Function
(cont'd)

Ctrl+E Move to top or bottom of screen
Ctrl+F Change case
Ctrl+G Repeat last extended command line
Ctrl+H Delete character left of cursor
Ctrl+I Move cursor to next tab position
Ctrl+J Not defined
Ctrl+K Not defined
Ctrl+L Not defined
Ctrl+M Return
Ctrl+N Not defined
Ctrl+O Delete word or spaces
Ctrl+P Not defined
Ctrl+Q Not defined
Ctrl+R Move to end of previous word
Ctrl+S Not defined
Ctrl+T Move to start of next word
Ctrl+U Move up 12 lines
Ctrl+V Redisplay window
Ctrl+W Not defined
Ctrl+X Not defined
Ctrl+Y Delete to end of line
Ctrl+Z Not defined
Ctrl+I Esc (enter extended command mode)
Not defined Not defined
Ctrk] Move to end or start of line, depending

on cursor position
Not defined Not defined
Not defined Not defined

4-18 ED

Command Menu
The following commands are for manipulating files:

Extended
Command...

Esc,C,M... Enters extended command mode;
equivalent to pressing Ctrl+[or Esc.

Repeat Last Esc,R,E Attempts to repeat the last command.
Run File... Esc,R,F... Loads and executes a command file of

extended mode commands.
ARexx
Command...

Esc,R,X... Runs the specified ARexx program.

Redisplay Esc,V,W Redraws the ED window and clears the
status line; equivalent to pressing Ctrl+V.

Other ED Commands
There are also ED commands that do not appear in menus. These
commands are listed here in functional groups. Use them in extended
mode by entering the following key sequences.

Program Control

The following are program control commands:

Extend Margins Esc,E,X

Status Line Esc,S,M...
Message
Exit with Query Esc,X,Q

Extends the margins for the current line.
Once you enter the EX command, ED
ignores the right margin on the current line.
Prints a given string on the status line.

Exits ED unless changes were made to the
file. If changes have been made, the
message File has bean changed—
type Y to save and exit: is
displayed. Press any key (except Y) to
abort the exit. XQ is equivalent to clicking
the close gadget on the ED window.

ED 4-19

Cursor Control

The following commands are used for controlling the cursor:

End Page Esc.E.P End of a page.
Previous Esc.P Start of the previous line.
Character Left Esc.C.L One place to the left.
Character Right Esc,C,R One place to the right.
Current End Esc,C,E End of the current line.
Current Start Esc,C,S Start of the current line.
Tab Esc,T,B Next tab position.
Word Next Esc,W,N Start of the next word.
Word Previous Esc,W,P Space after previous word.

Modifying Text

The following commands edit text on the screen:

Insert Before Esc,I Inserts the specified string on the line before
the cursor. Specify a new line's string after
the I command to insert text before the
current line containing the cursor.

Insert After Esc,A Inserts the specified string on the line after
the cursor. This command works in the
same way as I, except that the string is
inserted on a new line beneath the current
cursor position.

Split Esc,S Splits the current line at the cursor position.
Join Esc,J Joins the next line to the end of the current

line.
Delete Esc.D Deletes the current line.
Delete
Character

Esc,D,C Deletes the character under the cursor.

Delete Left Esc,D,L Deletes the character to the left of the
cursor.

Delete Word Esc,D,W Deletes to the end of the current word.
End Line Esc,E,L Deletes to the end of the current line.

4-20 ED

Flip Case Esc,F,C Switches the case of the selected letters,
one at a time.

Set Tab Esc,S,T Sets the tab stop. To change the current
setting of tabs, use the ST command
followed by a number.

Next Esc.N Start of the next line.

Repeating Commands in Extended Mode
Pressing Ctrl+G repeats a command line. You can set up and execute
complex sets of editing commands many times.

You can repeat a command a specified number of times by entering
the number before the command. For example:

4 E/rename/copy/
exchanges the next four occurrences of "rename" to "copy".

Use the RP (Repeat) extended command to repeat a command until
ED returns an error, such as reaching the end of the file. For
example:

T ;RP E/rename/copy/
moves the cursor to the top of the file, then exchanges all occurrences
of "rename" with "copy". The T command (Top of File) changes all
occurrences of Rename in the whole file. Otherwise, only the
occurrences after the current cursor position are changed.

To execute command groups repeatedly, you can group the commands
together in parentheses. You can also nest command groups. For
example:

RP (F/Workbench/;3A//)
inserts three blank lines (the null string If) after every line containing
Workbench.

To interrupt any sequence of extended commands, press any key
during execution. If an error occurs, ED abandons the command
sequence.

ED 4-21

Customizing ED
You can customize ED with commands that change the menus and
function key setup. These commands can be entered individually
within ED. They can also be saved as a script, such as S:Ed-startup,
or as a file specified using the WITH argument. To execute the file
from within ED, use the Run File (Esc,R,F) extended command. For
information about changing the function keys, see page 4-15.

Set Menu Item Esc.S.I Defines the menu headings and items. There
are 120 menu item slots ranging from 0 to
119. The slot type identifies the contents of
the slot and is a number from 0 to 4. The 0
slot type must be the last defined slot. Do not
create a menu without items; if you specify a
menu heading, include menu items after it.
See below for the syntax of the Set Menu Item
command and a table of the slot types.

Enable Menu Esc,E,M Enables menus. You must follow the Set
Menu Item commands with EM to enable the
menu commands. See page 4-22 for an
example script using the Enable Menu
command.

Set Menu Item
The following is the syntax for the Set Menu Item command:

SI <slot number> <slot type> /stringl/string2/
The following table shows the slot types and functions used with the
Set Menu Item command:

Type Function String Input

0 End of Menus No arguments
1 Menu Heading Stringl = heading name
2 Menu Item Stringl = item name

String2 = command string

4-22 ED

Type Function String Input
(cont'd) (cont'd) (cont'd)

3 Submenu Heading String 1 = heading name
String2 = command string

4 Separator bar No arguments

Example Script

The following is an example script using the Set Menu Item and
Enable Menu commands. Quotation marks are used as the
delimiters.

SI 0 1 "Project"
SI 1 2 "Open ... " "op ? /Open file:/
SI 2 2 "Save ... " "sa"
SI 3 4
SI 4 2 "Quit!" "q"
SI 5 1 "Move"
SI 6 2 "Top" "t"
SI 7 2 "Bottom" "b"
SI
EM

8 0

ED 4-23

This script produces the menus illustrated in Figure 4-4:

Figure 4-4. ED Custom Menu Example

Printing From ED
Use the following steps to print a file that is open in the current ED
window:

1. Choose the Save As menu item to display a file requester.

2. Enter p r t : in the Drawer field.

3. Select OK.

This prints the file, but does not save it to disk. If you wish to save
the file you must select the Save menu item or Save As and a file
name.

4-24 ED

Quitting ED
You can exit ED in one of the following three ways:

• Esc,X. This method exits ED and saves the current file to a
designated file name that was specified when ED was opened.

• Esc,X,Q or click on the ED window's close gadget. This method
exits ED if no changes were made to the file. If changes were
made to the file, ED lets you save the changes or exit without
saving.

• Esc,Q or select the Quit item in the Project menu. This method
exits ED without saving any changes if you confirm the status
line warning that changes will be lost.

ARexx Support
You can also control ED from ARexx by sending and receiving
commands through ED's ARexx port. Each copy of ED running
concurrently has an individual ARexx port name that must be
specified to handle information for the correct session. The ARexx
port names are assigned as follows:

• The first session's port name is Ed
• The second session's is Ed_l
• The third session's is Ed_2 and so on

Many of ED's extended commands can be used from ARexx. By using
ED's RV command in ARexx programs, you can send information
from ED to ARexx. This gives information about the status of ED,
such as the current line number or the name of the file being edited.

The RV command accepts the name of the ARexx stem variable to
store its argument information. For example, in ARexx:

address 'Ed' 'RV /stem/'
assigns values to the following variables:

stem.LEFT Current left margin
stem.RIGHT Current right margin
stem.TABSTOP Current tab stop setting

ED 4-25

stem.LMAX
stem.WIDTH
stem.X

Maximum number of lines visible on screen
Width of the screen in characters
Cursor X position in the ED window (1 is the left
edge)
Cursor Y position in the ED window (1 is the top line)
Window base (normally 0, but non-zero when the
screen is shifted to the right)
Extended margin value (Extend Margins command)
Case sensitivity flag (Ignore Case = 1, Case
Sensitive = 0)
Current line number in the file (1 is the first line)
Name of the file being edited
Text of the current line
Last extended command issued
Last string searched for

stem.Y
stem.BASE

stem.EXTEND
stem.FORCECASE

stem.LINE
stem. FILENAME
stem.CURRENT
stem.LASTCMD
stem.SEARCH

Any valid ARexx symbol can be substituted for "stem." Enclose the
name in proper delimiters. These variables can be treated as
ordinary ARexx stem variables.

ED/ARexx Example Program
The example program, Transpose.ed, illustrates the use of several
extended commands from ARexx. This program transposes two
characters when launched from ED. For example, if a line contains
the string 123 and the cursor is highlighting the 3, Transpose.ed
changes the string to 213.

Enter this program and save it as REXX:Transpose.ed. Then, open
ED and edit an existing file or create a new one. Place the cursor one
character to the right of the ones to be transposed, press Esc, and
enter:

RX /transpose.ed/
The program executes and the characters are transposed if ARexx is
running and everything is entered correctly. The entire file name,
including the extension, must be specified to run the program.

4-26 ED

Sample Program

/‘Transpose.ed: An example program to transpose two characters. 7
/* Given string '123', if cursor is on 3, this macro converts 7
r string into '213'. 7
HOST = address () /* find out which ED session invoked this program 7
address VALUE HOST /‘ ...and talk to that session 7
'rv' '/CURR/' /* Ask ED to store info in stem variable CURR 7

r Obtain two pieces of information: 7
currpos = CURR.X I* 1. position of cursor on line 7
currlin = CURR.CURRENT /* 2. contents of current line 7
if (currpos > 2) then /* Work only on the current line 7

currpos = currpos -1
else do /* Otherwise, report error and exit 7
'sm /Cursor must be at position 2 or further to the right/'
exit 10
end
r Next the code needs to reverse the CURRPOSth and CURRPOSth-1 7
r characters and then replace the current line with the new one. 7
r drop CURR. CURR is no longer needed; dropping it saves some 7
r memory. 7
'd* r Tell ED to delete current line 7
currlin = swapch (currpos.currlin) /* Swap the two characters 7
'i /'IlcurrlinllV' /* Insert modified line 7
do i = 1 to currpos /* Place cursor back where it started 7

'cr' r ED's 'cursor right' command 7
end

exit r Program has finished 7
r Function to swap two characters 7
swapch: procedure
parse arg cpos,clin

ch1 = substr(clin,cpos,1) /* Get character 7
clin = delstr(clin,cpos,1) /* Delete it from string 7
clin = insert(ch1 ,clin,cpos-2,1) /* Insert to create transposition 7

return clin I* Return modified string 7

MEmacs 4-27

MEmacs
MEmacs (MicroEmacs), which is similar to the UNIX-based Emacs
editor, is a screen-oriented editor in which you can edit multiple files
at the same time. MEmacs performs all operations on
memory-resident text, requiring that entire text files be able to fit
into memory at once.

Line length, generally 80 characters long, is limited to the right edge
of the screen. You can enter characters beyond the limit, however,
they are not displayed. To see these characters, break the line or
delete some of the displayed characters. A dollar sign ($) at the right
edge of the screen indicates that there are characters beyond what is
displayed.

The format for the MEmacs command is the following:

MEMACS [<filename>] [GOTO <n>] [OPT W]

The <filename> argument is optional.

The GOTO <n> option specifies the line on which the cursor is to
appear when the file is opened.

Specifying OPT W opens MEmacs in a Workbench window rather
than on its own screen, which saves memory.

Starting MEmacs
MEmacs can be run from either the Workbench or the Shell. From
the Workbench, double-click on the MEmacs icon in the Tools window
of the Extras disk. If you have a hard disk, the Tools drawer is in
your Workbench window.

From the Shell, enter:
MEmacs <filename>

where <filename> specifies the file to read into MEmacs. If a file
with that name does not previously exist, a new file is created when
you save your work.

4-28 MEmacs

MEmacs Commands
The line at the bottom of the MEmacs screen identifies either the
current file name or the name of the current buffer if no file name is
specified. Figure 4-5 illustrates the MEmacs opening screen.

HkroEHfKS V2.1
I

— MlcroEHlCS — wain----------------------------- ------------- ----------------- ------------------[New file]

Figure 4-5. MEmacs Opening Screen

Several buffers can be in use at the same time and one or more can be
displayed on the screen simultaneously. Menu options switch
between them. At all times, the screen displays what is actually in
the buffer.

MEmacs has two conditions of operation:

Normal When you enter and manipulate text directly in the file without
special functions.

Command When you enter a command through a menu selection or the
keyboard shortcut for it. In the command condition, the cursor
jumps to the bottom line of the display and waits for you to
supply additional information following the prompt. You
cannot return to the normal condition until you satisfy or
cancel the command by pressing Return.

MEmacs 4-29

In the MEmacs normal condition, you can:

• Move the cursor using the arrow keys.
• Move the cursor to the edge of the window by holding down Shift

and pressing the appropriate arrow key.
• Move the cursor by clicking the left mouse button at the desired

place on the screen.
• Insert characters at the current cursor position by typing them.
• Delete the character at the current cursor position by pressing

Del.
• Delete the character to the left of the cursor by pressing

Backspace.
• Perform other special menu and command functions.

When using MEmacs, you should be familiar with the following
special terms:

Buffer A memory area that MEmacs controls. There is always at least
one buffer used by MEmacs containing zero or more text
characters.

Dot The current cursor position.
Mark A specified cursor position. (Each buffer has its own dot and

mark.) The Set-mark menu item marks the current cursor
position (described on page 4-33). You can move forward or
backward in the file, adding or deleting text. To return to the
marked place, select the Swap-dot&mark menu item (described
on page 4-36).
You can also set a mark to indicate the beginning of a block of
text that you want to duplicate, move, or delete. The block
encompasses all the characters starting with the mark and
continuing to the current cursor position.

Kill Kill commands remove text from the screen to save in a kill
buffer. This text can be retrieved and inserted into your
document by using the Yank command. Issuing successive Kill
commands (without selecting Yank in between) adds each
block of text to the existing text in the kill buffer. If you select
Yank, the next block of killed text overwrites the current block.

Window MEmacs screens can be split into multiple layers for editing
and displaying more than one buffer or two or more portions of
the same buffer. Each layer is a MEmacs window.

4-30 MEmacs

Modified
Buffers

Buffers are marked as modified when any changes are made.
The modified status is removed when the buffer is saved.
To see modified buffers, use the List-buffers command
(described on page 4-33); modified buffers are identified with
an asterisk (*). If you exit MEmacs without saving any
changes, a prompt tells you that modified buffers exist and
asks if you really want to quit.

Menu Commands
MEmacs has the following menus:

Project Contains system and file-oriented items.
Edit Contains buffer editing commands.
Window Controls the characteristics of the MEmacs windows.
Move Controls the placement of the cursor.
Line Controls line-oriented operations.
Word
Search
Extras

Controls word-oriented operations.
Controls search and search/replace options.
Controls the numerical value of arguments and lets you
execute a series of operations as though it were a single
special command.

MEmacs 4-31

Figure 4-6 illustrates the MEmacs expanded menu bar.

Project
Renane A
R e a d - f i l e AXAR
V i s i t - f i l e AXAV
I n s e r t - f i l e AXAI
S a v e - f i l e AXAS
S a v e - a s - f U e
Save-nod AXAH
S a v e - e x i t AXAF
New-Cli A-
Cli -connand AX!
Quit AC
ftbout ...

Line Word Search Extras

~ MicroEHRCS --
CHew file)

Figure 4-6. M Em acs Expanded M enus

Project Menu
The commands in the Project menu, except for Visit-file, affect the
buffer associated with the current cursor position.

Rename Ctrl+X,F Changes the name of the file associated
with the current buffer. Pressing Return
without specifying a file name disassociates
the buffer from any file name.

Read-file Ctrl+X,
Ctrl+R

Replaces the contents of the current buffer
with the contents of a file. Enter a complete
file path. Press Return without specifying a
file name to ignore the request and return to
normal mode.

Visit-file Ctrl+X,
Ctrl+V

Allows you to work with additional files other
than the one you are currently editing.
Enter the complete file path.

4-32 MEmacs

Insert-file Ctrl+X,
Ctrl+I

Inserts the contents of a file into the current
buffer at a point one line above the current
cursor position. Enter the complete file
path.

Save-file Ctrl+X,
Ctrl+S

Writes the contents of the current buffer to
the file name associated with that buffer.
Issues the file's line count following a
successful save. MEmacs does not save
the file if no name is provided; it displays
this error message: No file name.

Save-as-file Ctrl+X,
Ctrl+W

Allows you to specify the name and path of
a file associated with a buffer.

Save-mod Ctrl+X,
Ctri+M

Writes the contents of all modified buffers to
the disk. Do not accidentally modify a buffer
that you did not intend to change.

Save-exit Ctrl+X,
Ctrl+F

Saves all modified buffers and exits
MEmacs.

New-CIi Ctrl+- Opens a new Shell window known as a
Spawn Window. Enter AmigaDOS
commands in the Spawn Window without
interfering with MEmacs. Close the window
with ENDSHELL.

Cli-Command Ctrl+X,! Lets you execute an AmigaDOS command
while in MEmacs. Enter a command
following the ! prompt at the bottom of the
screen. Command output is placed in the
spawn.output buffer.

Quit Ctrl+C Exits MEmacs. You are given an
opportunity to save modified buffers or quit
without saving. Alternative keyboard
shortcuts: Ctrl+X,Ctrl+C Esc,Ctrl+C.

About... Gives program copyright information.

MEmacs 4-33

Edit Menu
The commands in the Edit menu affect the editing of your buffers and
their associated files.

Kill-region Ctrl+W Deletes blocks of text from the current
buffer and saves them in a kill buffer. Text
can be retrieved with the Yank command.
Make copies of a block by immediately
selecting Yank without changing the cursor
position after killing the block. This restores
the block to its position and leaves a copy in
the kill buffer.

Yank Ctrl+Y Copies the contents of the kill buffer to the
current cursor location on the current line.
Reverses the action of Kill-region without
changing the contents of the kill buffer.
Used with Kill-region for moving text or for
repeatedly copying a single block of text.

Set-mark Ctrl+@ Marks the cursor position in a buffer. The
subsequent cursor position is referred to as
a dot. Move between the mark and the dot
using the Swap-dot&mark command in the
Move menu. Used for marking blocks of
text. Alternative keyboard shortcut: Esc,-.

Copy-region Esc,W Copies the contents of the marked region to
the kill buffer without deleting it, replacing
any previous contents.

Upper-region Ctrl+X,
Ctrl+U

Changes the text of the entire marked
region to upper case.

Lower-region Ctrl+X,
Ctrl+L

Changes the text of the entire marked
region to lower case.

List-buffers Ctrl+X,
Ctrl+B

Splits the current buffer's window and
displays a list of the buffers MEmacs is
maintaining. To redisplay the current buffer,
select the One-window command or press
Ctrl+X,1. The List-Buffer fields are:
C Displays an asterisk if the buffer

has been modified since it was
last saved to a file. (Stands for
changed.)

4-34 MEmacs

Size Shows how many characters are
in the buffer.

Buffer Shows the name given to the
buffer. If you read in a file, this is
the name of the file without the full
path.

File Shows the full path to the file.
This is the file to which MEmacs
writes the buffer if you Save-file or
Save-exit while the cursor is in
that buffer.

Select-buffer Ctrl+X.B Allows you to select the buffer to edit in the
current window. Replaces the contents of
the window with the selected buffer or new
buffer.

Insert-buffer Esc,
Ctrl+Y

Inserts the contents of a named buffer into
the current buffer at the line above the
current cursor position.

Kill-buffer Ctrl+X,K Deletes the contents of one or more chosen
buffers, returning the memory to the
memory manager to reuse. You must
specify the buffer to be deleted; a buffer
cannot be killed if its contents are currently
displayed.

Justify-buffer Ctrl+X,J Removes all blank spaces and tabs from
the left edge of all the lines in the current
buffer. The text realigns with the current
margins.

Redisplay Ctrl+L Redraws the screen.
Quote-char Ctrl+Q Allows insertion of any literal character in

the text file, except the Tab key. Alternative
keyboard shortcut: Ctrl+X,Q.

Indent Ctrl+J Moves the cursor to the next line,
automatically indenting the same amount of
spaces as the previous line. Alternative
keyboard shortcuts: Help or Enter on the
numeric keypad.

MEmacs 4-35

Transpose Ctrl+T Swaps the positions of two adjacent
characters. Place the cursor on the right­
most of the two characters and execute the
command.

Cancel Ctrl+G Ends an ongoing menu command, such as
query search and replace.

Window Menu
The Window menu controls how to view your buffers on the screen.

One-window

Split-window

Next-window

Prev-window

Expand-window

Shrink-window

Next-w-page

Prev-w-page

Ctrl+X,1 Makes the current buffer a single, full-sized
window on the MEmacs screen.

Ctrl+X,2 Splits the current window in half, positioning
the current buffer identically in both
windows. Any changes you make in either
window affect the whole buffer.

Ctrl+X,N Moves the cursor to the next window and
makes that window available for editing.

Ctrl+X, P Moves the cursor to the previous window
and makes that window available for editing.

Ctrl+X,Z Adds a line to the height of the current
window and simultaneously subtracts a line
from the height of the adjacent window.

Ctrl+X, Subtracts a line from the height of the
Ctrl+Z current window and adds a line to the height

of the adjacent window.
Esc, Displays the next page of the adjacent
Ctrl+V window. This does not make the window

available for editing.
Ctrl+X, V Displays the previous page of the adjacent

window. If only one window is displayed, it
displays the previous page of that window.

Move Menu
These commands move the cursor rapidly through the current buffer.

Top-of-buffer Esc,< Moves the cursor to the top line of the
current buffer.

4-36 MEmacs

End-of-buffer Esc,> Moves the cursor to the bottom line of the
current buffer.

Top-of-window Esc,, Moves the cursor to the top of the current
window.

End-of-window Esc,. Moves the cursor to the bottom of the
current window.

Goto-line Ctrl+X,
Ctrl+G

Moves the cursor to a specified line number.
Specifying a line number larger than the
total number of lines in a buffer moves the
cursor to the last line of the buffer.

Swap-dot&mark Ctrl+X,
Ctrl+X

Marks the current cursor position (dot) and
moves the cursor to the previously marked
setting.

Next-page Ctrl+V Moves the cursor toward the end of the
buffer by one full window, less one line.

Prev-page Esc.V Moves the cursor towards the beginning of
the buffer by one full window, less one line.

Next-word Esc,F Moves the cursor forward to the next non-
alphabetic character, such as a space or
punctuation mark, following the current
word.

Previous-word Esc,B Moves the cursor back to the first letter of
the previous word.

Scroll-up Ctrl+Z Moves the text up one line.
Scroll-down Esc.Z Moves the text down one line.

Line Menu
These commands move the cursor within or between lines and
perform operations involving entire lines.

Open-line Ctrl+O Splits the line containing the cursor, forcing
the character at the current cursor position
to become the first character of the following
line. The cursor remains on the original
line. Pressing the Del key cancels an
accidental Open-line.

Kill-line Ctrl+X, Deletes the line containing the cursor and
Ctrl+D places the text in the kill buffer.

MEmacs 4-37

Kill-to-eol Ctrl+K Deletes the text between the current cursor
position and the end of the line and places
the text in the kill buffer.

Start-of-line Ctrl+A Moves the cursor to the first position on a
line.

End-of-line Ctrl+E Moves the cursor to the last position on a
line.

Next-line Ctrl+N Moves the cursor down one line.
Previous-line Ctrl+P Moves the cursor up one line.
Line-to-top Esc,! Moves the line containing the cursor to the

top of the window.
Delete-blanks Ctrl+X,

Ctrl+O
Deletes blank lines, proceeding forward
from the current cursor position until
MEmacs reaches the next line on which
there is text. Does not delete single blank
lines.

Show-Line# Ctrl+X,= Displays information on the present cursor
position.

Word Menu
The Word menu contains word-associated operations.

Delete-forw Esc,D Deletes the character on which the cursor is
positioned and all remaining characters to
the right until the next non-alphanumeric
character is found, such as a blank space,
tab, or punctuation.

Delete-back Esc,H Deletes all characters to the left of the
cursor until it finds the first character of a
word. The character at the cursor position
is not deleted. Alternative keyboard
shortcut: Esc,Del.

Upper-word Esc,U Changes a word to upper case, starting at
the cursor position and proceeding to the
last character of the word.

Lower-word Esc,L Changes a word to lower case, starting at
the cursor position and proceeding to the
last character of the word.

4-38 MEmacs

Cap-word

Switch-case

Esc,C Changes the character at the cursor
position to upper case. Also changes the
characters to the right of the cursor, up to
the end of the word, to lower case.

Esc,A Changes the case of a word, starting at the
current cursor position and proceeding to
the right until it reaches the end of the word.
If a word is upper case or has mixed text, it
changes upper to lower case and vice
versa.

Search Menu
These commands search through the current buffer for specific text
strings. The case (upper or lower) of the string is not significant in
the search. However, if you are using text substitution (search and
replace), the text is replaced in the case of the replacement string.

Search-forward Ctrl+S

Search-backward Ctrl+R

Search-replace Esc, R

Query-s-r Esc,Q

Fence-match Esc,
Ctrl+F

Searches through the text starting at the
current cursor position and moving forward
to the end of the buffer. At the prompt,
enter the character string for the search.
Alternative keyboard shortcut: Ctrl+X,S.
Seaches through the text from the current
cursor position backwards to the beginning
of the buffer. Alternative keyboard shortcut:
Ctrl+X,R.

Searches the same as Search-forward,
allowing you to replace the string with
different text. At the prompt, enter the
replacement string of characters.
Operates the same as Search-replace,
except it asks for confirmation to replace
each time it finds the specified string. The
options are Y (yes), N (no), C (change all
occurrences), and Ctrl+G (abort).
Finds the closest occurrence of the fence
character to match the one at the current
cursor position. Fence characters are
parenthesis, brackets, braces, and angle
brackets.

MEmacs 4-39

Extras Menu
These commands are MEmacs operational commands and macro
commands. Specific numeric arguments may be required before
selecting a command; an * indicates that an argument is required.
Macro commands are executed by selecting the Execute-macro menu
item.

Set-arg Ctrl+U Lets you specify a numeric argument for a
command.

Set Esc,S Lets you set the following MEmacs
parameters:
Screen Places the MEmacs display in a

Workbench window or back onto
a custom screen.

Interlace Turns the interlace mode on or
off.

Mode Results in a second prompt
"Mode:"; you can enter Cmode
(for editing C programs) or Wrap
(to enable automatic word-wrap
when the text reaches a set
cursor position). Cmode
provides automatic fence
matching. Use +mode or -mode
to add or subtract a mode.

Left Determines the left margin.
Prompts for a numerical
argument if not provided with the
entry.

Right Determines the right margin.
Prompts for a numerical
argument if not provided with the
entry.

Tab Sets the increment for tab
spacing. Prompts for a
numerical argument if not
provided with the entry.

4-40 MEmacs

Start-macro

Stop-macro
Execute-macro

Set-key

Reset-keys

Execute-file

Indent Determines how far to indent
each level of nesting (used in
Cmode). Prompts for a
numerical argument if not
provided with the entry.

Case Turns case-sensitive searches
on or off; default is off.

Backup Turns the MEmacs backup
function on or off. Your options
are: ON (renames the current file
<filename>.bak and saves that
backup file to the T: directory);
SAFE (this option checks to see
if a file already exists for the
buffer— if so, it displays an error
and does not overwrite the
existing file, Ctrl+X clears the
display); and OFF (this is the
default option — MEmacs does
not perform any backup).

Ctrl+X,(Tells MEmacs to start recording any
subsequent keystrokes. Used with the Stop-
macro and Execute-macro commands.

Ctrl+X,) Tells MEmacs to stop recording keystrokes.
Ctrl+X,E Repeats keystrokes that were entered

between Start-macro and Stop-macro.
Ctrl+X, Allows you to redefine all of the function
Ctrl+K keys, the Shifted function keys, the Help key,

or any key on the numeric keypad as
keyboard macros. You cannot use the menu
shortcut of Ctrl+@ to insert the Set-mark
command into any keyboard macro
definitions.

Esc,K Returns any keys defined by Set-keys to their
original default state.

Esc,E Allows you to execute a program file within
MEmacs.

MEmacs 4-41

Execute-line Ctrl+[, Sets MEmacs to command mode. At the
Ctrl+[prompt enter any menu command and its

parameters. Alternate keyboard shortcut:
Esc, Esc.

The following table contains the default values of the Set-key/function
keys when used in macro commands.

Key Assignment Key Sequence

F1 Clone line Ctrl+A,Ctrl+K,Ctrl+Y,Ctrl+M,Ctrl+Y
F2 Delete line Ctrl+X,Ctrl+D
F3 Execute keyboard

macro
Ctrl+X,E

F4 Next screen Ctrl+V
F5 Previous screen Esc.V
F6 Split window Ctrl+X,2
F7 One window Ctrl+X, 1
F8 Scroll window up Ctrl+Z
F9 Scroll window down Esc,Z
F10 Save file and exit Ctrl+X,Ctrl+F
Help Insert line Ctrl+J
Enter (keypad) Insert line Ctrl+J

Commands Not in Menus
The following commands are only accessible through the keyboard.

Keys are bound when they can be used to perform a function. For
example, any key or key sequence that can be used as a shortcut for a
menu item is bound to that menu item.

Describe Key

Bind Key

Esc, Tells you if any functions are bound to a key
Ctrl+D or key sequence. At the prompt enter the

specific key or key sequence.

Esc, Allows you to bind a key to a function. At
Ctrl+B the prompt, enter the key or key sequence.

4-42 MEmacs

Unbind Key Esc,
Ctrl+U

Allows you to return a bound key to an
unbound state. At the prompt, enter the key
or key sequence. Standard bound keys
cannot be unbound.

Echo Esc,
Ctrl+E

Displays the string entered in the command
line.

Move to Edge of
Window

Shifts
Arrow

Moves the cursor to the top, bottom, left, or
right edge of the screen.

Delete the Next
Character

Ctrl+D Deletes the character at the current
position. Same as pressing Del.

Delete the
Previous
Character

Ctrl+H Deletes the character to the left of the
current cursor position. Same as pressing
Backspace.

Move to Next Line Ctrl+M Inserts a newline character after the current
cursor position and moves the cursor to the
start of the new line.

Move x number of
Charcters

Ctrl+F,
Ctrl+B

Allows you to move the cursor forward or
backward a specified number of spaces.
Providing no value moves the cursor only
one character.

Customizing MEmacs
MEmacs looks for an Emacs_pro file when it is opened to see if there
are any commands or local files that it should automatically execute.
You can customize the Emacs_pro file by adding commands to it that
you use often, command sequences, or text strings. If an Emacs_pro
file does not already exist, you can create one.

To create a global file of commands, place the Emacs_pro file in the S:
directory. Local files can be put in any directory. If that directory is
the current directory when MEmacs is opened, the commands in that
particular local file are executed.

When both local and global Emacs_pro files are present, the local file
overrides the global file.

For example:
Set Case On
Set-Key Fll "Dear Sirs:"

EDIT 4-43

Set-Key F12 "^S Workbench"
Set-Key F13 " *X*B"

makes the following assignments:

Shift+F1
Shift+F2

Enter the text string "Dear Sirs:".
Search forward for the next occurrence of the word
Workbench. (The Set Case On commands make any
text searches case-sensitive.)
Display the list of buffers.Shift+F3

You must use Ctrl+Q to enter a Ctrl+key sequence. For example, to
enter the AS character shown in the example, press Ctrl+Q, Ctrl+S.

Quitting MEmacs
You can exit MEmacs by selecting the Quit menu item in the Project
menu or by entering Ctrl+C. MEmacs lets you save any modified
buffers or quit without saving.

EDIT
EDIT is a line editor designed for the automated editing of files,
particularly binary files or files that are larger than available
memory. You cannot create a new file with EDIT.

EDIT processes files line by line. As EDIT moves through the input,
or source file, each line is passed after alteration to a sequential
output file, the destination file.

EDIT processes the lines in files in a forward direction; however, you
can move backward a limited number of lines. EDIT holds the lines
in an output queue before writing them to the destination file. The
size of this queue depends on the amount of memory available. You
can increase the size of the queue with the OPT P and OPT W
options.

4-44 EDIT

The format for EDIT is the following:

EDIT [FROM] <filename> [[TO] <filename>] [WITH <filename>]
[VER <filename>] [OPT P <lines> | W <chars> |
P<lines>W<chars>] [WIDTH <chars>] [PREVIOUS <lines>]

The FROM argument specifies the source file to be edited. You must
specify a source file with EDIT, although the FROM keyword is
optional.

The TO argument specifies the destination file to which EDIT sends
its output, including editing changes. If you omit the TO argument,
EDIT uses a temporary file. This temporary file is renamed with the
name of the FROM file and overwrites the FROM file when editing is
complete.

The WITH keyword specifies a file containing editing commands.

The VER keyword specifies the file to which EDIT sends error
messages and line verifications. If the VER argument is not given,
EDIT uses the screen.

Use OPT P <n> and OPT W <n> to specify the PREVIOUS and
WIDTH options. However, do not use the OPT keyword with
PREVIOUS and WIDTH.

You can use the PREVIOUS and WIDTH options to increase or
decrease the amount of available memory. The PREVIOUS option
sets the number of previous lines available to EDIT to the integer
<n>. The WIDTH option sets the maximum number of characters
allowed on a line to <n>. EDIT multiplies the number of previous
lines by the maximum number of characters (PREVIOUS * WIDTH)
to determine the available memory. The default values are
PREVIOUS 40 WIDTH 120.

Starting EDIT
Start EDIT through a Shell using the following command:

l.> EDIT <filename>
Where <filename> is the name of an existing file to be edited.

EDIT 4-45

EDIT Commands
The following list provides background information about EDIT
commands: •

Current line Refers to the line that EDIT is working on at any time.
Every command entered refers to the current line, all
text changes are made to the current line, and new
lines are inserted before the current line.

Original lines The lines of the source file. Lines retain their original
number until you renumber them with the REWIND or =
commands.

Non-original lines Any lines that are inserted into the source file or
original lines that are split. These are not assigned line
numbers.

Line verification When using commands that change information in a
line, EDIT displays the revised line after the command
is executed.

Arguments Strings, qualified strings, numbers, and switch values
used with EDIT commands.

Enter commands in one of the following three ways:

• Enter the commands, then press Return
• Enter the final command argument, then press Return
• Enter a semicolon or closing parenthesis

The text conventions used in the command descriptions are the
following:

• Command names are shown in upper case, although EDIT is not
case-sensitive.

• Angle brackets indicate that information must be substituted.
For example, <string> indicates that the command takes a string
argument.

• An <n> represents a numeric argument.
• Square brackets indicate that the argument is optional. For

example, [<n>] indicates that the command can take an optional
numeric argument.

4-46 EDIT

• Slashes are used as delimiters for strings; use one slash between
two strings.

• Periods are used as delimiters for file names (slashes cannot be
used since they are used to separate strings).

Selecting the Current Line
The following commands let you move through the file and select the
current line.

Move to a specific M <n>
line number

Move to next line N
In the source file

Move to the P
previous line in
the source file

Find F<string>

Search Backward B,F<string>

Specify a new current line by entering
its line number, a period, and an
asterisk as M's argument. Only original
lines can be accessed by line number.
Move forward one line. Entering a
number and N indicates the number of
lines to move forward. When used as
the last line of the source file, EDIT
creates an extra line at the end of the
file. If you are already on this extra
line, using N causes an error message
to be displayed.
Moves back one line. Entering P
repeatedly moves more than one line.
Entering a number + P indicates how
many lines to move back. You can only
move back to previous lines that have
not yet been written to the destination
file. The default is 40 lines, which can
be changed with the PREVIOUS option.
Lets you select a current line by
specifying some of its content.
Looks backward starting from the
current line through the source file for a
line containing the specified string.

EDIT 4-47

Editing the Current Line
The following commands add new material or replace material on the
current line.

Insert <string2> A <string1 >
after <string1 > <string2>
Insert <string2> B <string2>
before <string1> <string1>

Inserts <string2> after the first
occurrence of <string1>.
Inserts <string2> before the first
occurrence of <string1>.

Exchange
<string2> for
<string1>

E <string2> Replaces the first occurrence of
<string1 > <string1 > with <string2>.

Inserting and Deleting Lines
The following commands insert new material (non-original lines) and
delete lines from the source file. You can also insert complete files
into the source file.

Insert one or more I [<n>]
lines

Delete one or more D [<n>]
lines

Delete all lines D,F<string>
until the specified
string is found

If given alone or with a line number,
inserts text before the current line.
If given with an asterisk, the text is
inserted at the end of the file.
Indicate the end of the insertion by
pressing Return, Z, and Return.
Deletes the current line if entered with
no arguments. Deletes a specific line if
entered with a line number. Deletes a
set of lines if entered with a range of
line numbers; do not use punctuation
between the numbers. Deletes
everything from the current line through
the end of the source file if entered with
a period and an asterisk as arguments.
Deletes successive lines from the
source file until the line containing the
matching string is found. If no
argument is specified, it deletes all lines
until it finds the last string specified.

4-48 EDIT

Delete existing
lines and replace
with new text

R [<n>] Lets you delete lines and then insert
new ones. Entering a line number
following R indicates a specific line to
replace.

Change the
terminator

Z <string> Tells EDIT that it has reached the end
of any new text that is being inserted.
Entering a string after Z changes it from
the default.

Show current
information about
EDIT

S,H,D Displays saved information values,
such as the last string searched for, the
last command entered, and the input
terminator.

Turn trailing
spaces on/off

T,R, +1- Preserves any blanks that fall at the
end of lines.

Editing Line Windows
You can define subsections of the line, called line windows, on which
EDIT executes all subsequent commands. In the descriptions of EDIT
qualifiers, the beginning of the line always indicates the beginning of
the line window.

Whenever EDIT verifies a current line, it indicates the position of the
line window by displaying a > character directly beneath the line.
EDIT omits the pointer if the line window begins at the start of the
line.

The following commands control the position of the character pointer:

> Moves the pointer one character to the right.
< Moves the pointer one character to the left.
PR Resets the pointer to the start of the line.
PA <string> Moves the pointer to the first character after the

specified string.
<string> Moves the pointer to the first character before the

specified string.

EDIT 4-49

The following commands change the character at the current pointer,
then move the pointer:

$ Makes the character at the pointer lower case, then moves the
pointer one character to the right.

% Makes the character at the pointer upper case, then moves the
pointer one character to the right.
The _ (underscore) command deletes the character at the
pointer, turning it into a space, then moves the pointer one
character to the right.

Deletes the character at the pointer, then moves the rest of the
line one character to the left. To delete several characters,
specify a number before the #. For example, 5# deletes the
next five characters in the window.

A combination of these commands can be used to edit a line character
by character.

The following commands insert and exchange text on the current line,
similar to the A, B, and E commands; however, the character pointer
is moved on completion.

Insert <string2>
after <string1>

A,P
<string1>
<string2>

Inserts <string2> after the first
occurrence of <string1>. The pointer is
then positioned after <string2>.

Insert <string2>
before <string1>

B,P
<string1>
<string2>

Inserts <string2> before the first
occurrence of <string1>. The pointer is
then positioned after <string2>.

Exchange
<string1> with
<string2>

E,P,
<string1>
<string2>

Replaces the first occurrence of
<string1> with <string2>. The pointer is
then positioned after <string2>.

Delete Till After D,T,A
<string>

Deletes all text from the beginning of
the line or the character pointer to the
end of the specified string.

Delete Till Before D,T,B
<string>

Deletes all text from the beginning of
the line or the character pointer; stops
before the specified string.

Delete From After D,F,A
<string>

Deletes all text starting after a specified
string to the end of the line.

Delete From
Before

D,F,B
<string>

Deletes all text starting with the
specified string to the end of the line.

4-50 EDIT

Splitting and Joining Lines
These commands split a line into more than one line and join together
two or more successive lines.

Split line before S,B
<string> <string>

Split line after S,A
<string> <string>

Join two lines C,L
[<string>]

Splits the current line before the
specified string. The first part of the line
is sent to the output queue; the second
part is made into a new non-original
current line. Qualifiers can be used to
restrict the context of the string.
Splits the current line after the specified
string. The first part of the line is sent to
the output queue; the remainder of the
line becomes the new current line.
Qualifiers can be used to restrict the
context of the string.
Joins the current line with the next line of
the source file. The string argument is
optional; however, if a string is specified
it is added to the end of the current line
and that whole line is joined with the
next line in the source file.

Renumbering Lines
These commands renumber the source file's lines to include non-
original lines and to update a file that has been edited.

Renumber source = <n>
lines

Return to the REWIND
beginning source
file

Sets the current line number to <n>. All
subsequent original and non-original
lines below <n> are renumbered if you
move to them.
Moves back through the source file to
make line 1 the current line. EDIT scans
the rest of the source file and writes the
lines to the destination file. This file is
closed and reopened as a new source
file. Non-original lines are now
recognized as original lines. Can be
entered as REWI.

EDIT 4-51

Verifying Lines
These commands describe different ways of verifying lines.

Turn Verification V + I - Turns line verification on or off. If off, the
on/off lines are not displayed on the screen.

To turn off, enter V -. To turn on, enter V

Verify the current ? Verifies the current line by displaying the
line line number and the contents of the line.
Verify the current
line with
character
indicators

Produces two lines of verification. In the
first line all nongraphic characters are
replaced with the first character of their
hexadecimal value. In the second line, a
minus sign is displayed under all
positions corresponding to upper case
letters and the second hexadecimal digit
corresponds to nongraphic characters.
All other positions contain spaces. In
binary files, nongraphic characters are
represented with question marks (??).

Inspecting the Source File
These commands advance through the source file, sending the lines it
passes to the verification file, as well as to the normal output. They
are known as Type commands because they display lines on the
screen.

Type <n> lines to
the screen

T<n> Types the specified number of lines to
the screen. The first line typed is the
current line. Omitting the <n> continues
typing to the end of the source file.
Interrupt the command with Ctrl+C.

Type the lines in
the output queue

T,P Displays the lines currently held in the
output queue.

Type until EDIT
has replaced all
the lines in the
output queue

T,N Types from the current line forward until
all the lines in the output queue are
replaced. The previous contents are
sent to the destination file.

4-52 EDIT

Type with line T,L <n> Similar to the T command. Types a
numbers specified number of lines, displaying the

line numbers. EDIT displays + + + + for
inserted or split lines since they do not
have line numbers.

Making Global Changes
These commands start and stop global changes. Global changes take
place automatically as EDIT scans the source file in a forward
direction. These commands automatically apply an A, B, or E
command, as appropriate, to any occurrence of <stringl> in a new
current line. They also apply to the current line that is in effect when
the command is given.

GA [qualifier] <stringl> <string2>
GB [qualifier] <stringl> <string2>
GE [qualifier] <stringl> <string2>

For example, if you want to change DFO: to DF2: throughout an
entire file, enter:

GE /DFO:/DF2:/
Cancel a global
command

CG [<id
number>]

Cancels a global command. The
identification number set with a GA,
GB, or GE command is output to the
verification file or the screen if EDIT is
interactive. If no argument is specified,
all global operations are cancelled. To
cancel a specific operation, enter the
identification number after the CG
command.

Suspend a global
command

SG [<id
number>]

Suspends a global command. All
global operations are suspended if no
argument is given. Enter the
identification number to suspend a
specific operation.

Enable a global
command

EG [<id
number>]

Resumes global operation that had
been suspended with the SG
command. Unless a specific
identification number is provided, all
global commands are resumed.

EDIT 4-53

Show gobal SHG Displays the current global commands
commands and their identification numbers. Also

provides the number of times each
global string was matched.

Changing Command, Input, and Output Files
These commands change the files set up when you started EDIT from
the Shell. These files are:

• the command file — started with the WITH option.
• the input file — the source file specified with FROM.
• the output file — the destination file specified with TO.

Changing the
Command File

C <filename> Reads EDIT commands from a
specified file. Delimit the file using a
character other than a slash (/) since
AmigaDOS uses these characters to
separate file names. When all
commands in the specified file are
executed, the file is closed. You can
then enter the commands through the
keyboard.

Changing the FROM Reads lines from another source file.
Input File <filename> EDIT does not close the original

source file. Reselect the source file by
entering the FROM command without
an argument. For examples of the
FROM command, see page 4-54.

Closing a File CF <filename> Closes the destination file that was
originally specified with the TO
command. You can then open that file
for input. CF can also close a new
input file that is open. For examples
of the CF command, see page 4-54.

4-54 EDIT

Changing the TO Specifies a different file as the
Output File <filename> destination file. The TO command

writes the existing queue of output
lines to the new TO file. The new TO
file is used until another file is
specified. Reselect the original
destination file by using the TO
command with no argument. The
alternate output file remains open, but
unused. For examples of the TO
command, see page 4-54.

Stop executing Q Stops EDIT from executing the current
the command file command file specified with the WITH

keyword or with the C command.
EDIT reverts to any previous
command file. Using Q at the
outermost level is equivalent to using
the W command.

The FROM, CF, and TO commands are used as follows:

Command Action

M10 Pass lines 1-9 in the original source file to the output
queue.

FROM .XYZ. Select the XYZ file for new input; line 10 of the original
source file remains current.

M6 Pass line 10 from the original file, then pass lines 1-5
from the XYZ file to the output queue. Line 6 of XYZ is
the new current line.

FROM Reselect the original source file.
M14 Pass line 6 from XYZ, then lines 11-13 from the original

source file to the output queue. Line 14 of the source file
is the new current line.

FROM .XYZ. Reselect file XYZ. Line 14 of the source file is still the
current line.

M* Pass line 14 of the source file and all remaining lines of
file XYZ to the output queue. An extra line is added to
the end of file XYZ. That line is the new current line.

EDIT 4-55

Command
(cont'd)

Action
(cont'd)

FROM Reselect the original source file. The extra line added to
file XYZ is still the current line.

CF .XYZ. Close file XYZ.
M* Pass the remaining lines of the source file (lines 15 to the

end of the file) to the output queue.
M11 Pass lines 1-10 of the source file to the original

destination file.
TO .XYZ. Make XYZ the new output file.
M21 Pass lines 11 -20 to file XYZ.
TO M31 Make the original destination file current, and pass lines

21 to 30 to it.
TO .XYZ. Make XYZ the current output file.
M41 Pass lines 31 to 40 to XYZ.
TO Make the original desination file current.
TO .XYZ. Send the output queue to file XYZ.
1000N Advance through the next 1000 lines of the source file.
TO Select the original destination file.
CF .XYZ. Close the XYZ file.
I2000 .XYZ. Insert the 1000 lines from the source file that were sent to

file XYZ back into the source file above line 2000.

4-56 EDIT

Ending EDIT
These commands exit EDIT.

Exit, saving W Exits EDIT, saving all changes to the
changes destination file specified by TO. EDIT

exits after reaching the end of the source,
closing all the files, and relinquishing
memory. If you started EDIT without
specifying a destination file, it renames
the temporary destination with the same
name as the original source file, which is
renamed .T/Edit-backup. This backup is
only available until the next time you run
EDIT.

Exit, without STOP Stops EDIT immediately without saving
saving changes any changes to the source file. Prevents

EDIT from overwriting the original source
file, ensuring that no changes are made
to the original input information.

Chapter 5

Using Scripts

Script files are text files that contain lists of commands for repetitive
or complicated tasks or for performing the same operation on multiple
files. This chapter includes the following information about script
files:

• Understanding scripts
• Scripting characters
• Script commands
• Condition flags
• Debugging script files
• Environment variables

Understanding Scripts
A script is a text file that contains a series of commands. Using
scripts is a way to automate complex or repetitive tasks, especially
those that you need to perform regularly. A script can perform
virtually any operation normally done one command at a time,
including working with programs and data files; performing
calculations; and operating interactively, accepting and displaying
information. Essentially a script is a small program that can be
easily edited.

To create a script, follow these steps:

1. Open a text editor, such as ED, that saves files in ASCII format.

2. In the text editor, enter the script commands in the sequence in
which they are to be performed.

5-2 Understanding Scripts

3. Save the file. The S: directory is usually used for script files, but
you can store a script anywhere.

You can then run the script in the Shell, entering the EXECUTE
command followed by the full path to the script.

Note You can avoid having to use the EXECUTE command
and the full path by setting the script's s protection bit.
Enter the command PROTECT <script> +s,
substituting the path to the script. When the s bit is
set, enter only the name of the script to execute it.

It is possible to run a script that has a Workbench project icon by
using the ICONX command as the default tool. For more information
on the ICONX command, see Chapter 6.

Kinds of Scripts
There are several kinds of scripts that you can use on the Amiga,
including scripts of AmigaDOS commands, scripts of ARexx
commands, and scripts of ED commands. For details on writing
ARexx scripts, see the ARexx User's Guide. See the ED section of
Chapter 4 for information on ED command scripts.

When to Use ARexx
You can create both AmigaDOS and ARexx scripts on the Amiga.
These scripts are not mutually exclusive; under AmigaDOS Release 2
and beyond, ARexx commands can appear in AmigaDOS scripts and
vice versa. However, different tasks are appropriate to each.

Unlike ARexx, AmigaDOS is not a general purpose programming
language. AmigaDOS is oriented toward basic file management and
system configuration tasks. ARexx is meant to be used for
accomplishing tasks more complex than simple branching and
conditional execution.

Special Script Characters 5-3

Simple Scripts
A script can be as simple as a series of paths, telling the Amiga to run
certain programs. A User-startup file is a good example of a simple
script. You can add various configuration commands, such as an
ADDBUFFERS statement, to such a script without worrying about
affecting program flow or using error checking. For more information
about the User-startup file, see Appendix D.

Automatic Scripts
You can automatically generate scripts using the LIST command.
LIST has an LFORMAT option that allows you to modify its output to
include any text you wish along with the usual LIST output. This
text can be a command and command keywords, with the file name
LISTed appearing as an argument to the command. If you list the
contents of a directory this way, redirecting the output to a file, you
have a ready-made script that applies a command to the contents of
that directory.

When an operation on multiple files is too involved to be done with a
single pattern matching command, use an automatically generated
script to execute the command for each of the files. For example, an
operation that renames a series of files, giving the current file names
the same extension, cannot be done with a single pattern-matching
RENAME. See the LIST section in Chapter 6 for information on
LIST'S LFORMAT option and the examples in Chapter 8 for an
illustration of this technique.

Special Script Characters
The semicolon, back apostrophe, dollar, double dollar, and question
mark are special characters that are used primarily in scripts to add
comments, execute commands from within strings, introduce
environment variables, reference the current Shell number, and
accept input redirection.

5-4 Special Script Characters

Semicolon (;)

Semicolons add comments to command lines. All characters to the
right of a semicolon are ignored, allowing you to place descriptive
comments on the same line with AmigaDOS commands. For
example:

ASSIGN T: RAM:t ;set up T: directory for
;scripts

Comments can continue onto additional lines if they are too long to fit
on one line. New lines must begin with a semicolon and should be
indented to the same level as the previous comment for clarity.

Back Apostrophe f)

Back apostrophes are used to execute commands from within a string.
If a string containing a command enclosed in back apostrophes is
printed, the enclosed command is executed. For example:

1> ECHO "The date and time are: 'date'"
prints "The date and time are: " followed by the output of the DATE
command. When a command such as DIR that produces multiple
lines of output is embedded in an ECHO statement, the output is not
properly formatted; all of it appears on one line.

Note Commands that refer to the current directory do not
work correctly when invoked from within a string with
the back apostrophe. Using the back apostrophe
automatically sets up a temporary sub-shell for that
command only. References to a current directory
access the sub-shell's directory.

Dollar ($)

The dollar sign is used in two ways: as an operator that introduces an
environment variable (which also works outside of a script) and in a
bracketed statement to separate a variable value from a default
value.

For example, with an environment variable:
1> ECHO "Current Kickstart version: $Kickstart"
Current Kickstart version: 39.106

Script Commands 5-5

As a default separator in a script:
COPY foo.library TO <LIBS:$userlibdir>

You can change the character that provides this function from the
dollar sign to something else with the .DOLLAR scripting keyword.

Double Dollar (<$$>)

A bracketed double dollar sign (<$$>) substitutes the current process
number. You can reference the current Shell number by the double
dollar sign character string <$$> including brackets since it always
returns the current process number as a string. When you create
temporary files in a multitasking environment, it is essential for
these files to have unique names so that processes do not interfere
with each other. Adding the <$$> string to file names creates unique
names for temporary files, logical assignments, and PIPEs. A .KEY
statement is required in any script that uses <$$>. .KEY is described
on page 5-7. To avoid conflict with the redirection arguments, <$$>'s
angle brackets can be redefined using the .BRA and .KET commands.
.BRA and .KET are described on page 5-8.

Question Mark (?)

The question mark, when used as a separate argument in a
command, instructs the command to accept input redirection.

Script Commands
Any AmigaDOS command can be used in a script, however, there are
some commands that are used only in scripts. You can do the
following with script commands:

• Parameter substitution
• Enter arguments on the command line
• I/O redirection
• Specify default strings
• Enter comments
• Nest commands within scripts
• Create interactive scripts

5-6 Script Commands

• Create scripts that repeat commands

Script-Specific Commands
The following commands are typically used only with scripts:

Script Command Meaning

ASK Asks for user input.
ECHO
ELSE

Prints a string.
Allows an alternative in a conditional block.

ENDIF
ENDSKIP
EXECUTE

Terminates an IF block.
Terminates a SKIP block.
Executes a script with optional argument substitution.

FAIL AT Sets the failure condition of the script.
IF
LAB
QUIT
REQUESTCHOICE

Handles conditional operations.
Specifies a label; used with SKIP.
Specifies a return code and exits a script.
Allows AmigaDOS and ARexx scripts to use system
requesters to ask the user for feedback.

REQUESTFILE Allows AmigaDOS and ARexx scripts to use the
system file requester.

SKIP Skips the execution of the script ahead or backwards
to the specified label.

WAIT Waits for the specified time.

Dot Commands
Dot commands are keywords beginning with a period that are used
only in scripts. Special dot command lines included in your script can
specify places for parameter substitution. Enter these parameters as
arguments to the EXECUTE command. The following table lists the
dot commands.

Script Commands^ 5-7

Dot Command Meaning

.KEY Argument template used to specify the format
of arguments; can be abbreviated to .K.
Separate arguments for .KEY with commas.
Do not use spaces. See page 5-7 for more
information on using .KEY.

.DOT <ch> Change dot character from . to <ch>, where
<ch> is the character that is substituted.

.BRA <ch> Change opening bracket character from < to
<ch>.

.KET <ch> Change closing bracket character from > to
<ch>.

.DOLLAR <ch> Change default character from $ to <ch>; can
be abbreviated to .DOL.

.DEF <keyword> <value> Give default to parameter.

.<space> Comment line. Be sure to include the space
following the dot to avoid producing an error.
Note that the preferred method for entering
comments is with a semicolon (;).
Blank comment line. Be sure there is nothing
else on the line with the dot to avoid producing
an error.

When you EXECUTE a command line, AmigaDOS looks at the first
line of the script. If it starts with a dot command, AmigaDOS scans
the script looking for the parameter substitutions described above and
builds a temporary file in the T: directory. If the file does not start
with a dot command, AmigaDOS assumes that no parameter
substitution is necessary and starts executing the file immediately
without copying it to T:. Because dot commands require extra disk
accesses and increase execution time, do not use them if you do not
need parameter substitution.

Allowing Arguments
The .KEY (or .K) keyword specifies both keyword names and positions
in the command line. It tells EXECUTE the number of parameters
and how to interpret them. Only one .KEY statement is allowed per

5-8 Script Commands

script; if present, it should be the first line in the file. Any script
containing <$$> must also contain a .KEY statement.

The arguments on the .KEY line can be given with the /A and /K
directives, which work the same as in an AmigaDOS template.
(Templates are described in Chapter 6.) Arguments followed by /A
are required; arguments followed by /K require the name of that
argument as a keyword. Use commas to separate multiple arguments
in the .KEY line, not spaces.

For example, if a script starts with .KEY filename/A it indicates that
a file name must be given on the EXECUTE command line after the
name of the script. This file name is substituted in subsequent lines
of the script. For example, if you have a script called Newtext and the
first line is:

.KEY filename/A,TO/K
you must specify a file name variable. The TO variable is optional,
but, if specified, the TO keyword must be used. The following is an
acceptable way to run Newtext:

1> EXECUTE Newtext Textfile TO NewFile

Substitution
Before execution, AmigaDOS scans the script for any items enclosed
by .BRA and .KET characters (< and > by default). Such items can
consist of a keyword or a keyword and a default value. EXECUTE
tries to substitute a parameter when it finds a keyword enclosed in
angle brackets. However, if you want to use a string in your script
file that contains angle brackets or if your script uses angle brackets
for redirection of input/output, you must define substitute bracket
characters with the .BRA and .KET commands. .BRA <ch> changes
the opening bracket character to <ch>, while .KET <ch> changes the
closing bracket character to <ch>.

For example, the following script called Demo uses these lines:
.KEY filename
ECHO "This line does NOT print <angle> brackets."
.BRA {
.KET }
ECHO "This line DOES print <angle> brackets."
ECHO "The specified filename is {filename}."

Script Commands 5-9

1> EXECUTE Demo TestFile
which results in the following output:

This line does NOT print brackets.
This line DOES print <angle> brackets.
The specified filename is TestFile.

The first ECHO statement causes AmigaDOS to look for a variable to
substitute for the <angle> parameter. Since no argument named
"angle" is given on the EXECUTE command line, the null string is
substituted. The .BRA and .KET commands tell the script to use
braces instead of angle brackets to enclose parameters. When the
second ECHO statement is executed, the angle brackets—with their
special meaning removed—are printed as normal text. The third
ECHO statement illustrates that the braces now function as the
bracket characters.

Redefine <$$>'s angle brackets with .BRA and .KET to avoid
redirection conflicts.

Defaults
When enclosing a keyword in bracket characters, you can also specify
a default string to be used if a variable is not supplied on the
command line. Defaults can be specified in two ways: every time you
reference a parameter or using the .DEF command.

If you specify the default every time you reference a parameter, you
must separate the two strings with a dollar sign ($).

For example, in the following statement:
ECHO "<wordl$defwordl> is the default for Wordl."

defwordl is the default value specified for wordl. It is printed if no
other variable is given for wordl. However, if you want to specify this
default several times in your script, you must use <wordl$defwordl>
each time.

Defining a default using the .DEF command allows you to specify a
default for each specific keyword. For example:

.DEF wordl "defwordl"

5-10 Script Commands

assigns defwordl as the default for the wordl parameter throughout
the script. The following statement:

ECHO "<wordl> is the default for Wordl."
results in the same output as the previous ECHO statement:

defwordl is the default for Wordl.
The .DOLLAR <ch> command allows you to change the default
character from $ to <ch>. (You can also use .DOL <ch>.) For
example:

.DOL #
ECHO "<wordl#defwordl> is the default for Wordl."

Comments
You can embed comments in a script by including them after a
semicolon (;) or by entering a dot (.), followed by a space, then the
comment. Blank lines are accepted and ignored within scripts.

Note We recommend that you use the semicolon method for
entering comments to avoid errors caused by omitting
the space following the dot.

Nesting Commands
AmigaDOS provides a number of commands that can be used in
scripts, such as IF, ELSE, SKIP, LAB, and QUIT. These commands,
as well as the EXECUTE command, can be nested in a script.

To stop the execution of the current script, press Ctrl+D. If you have
nested script files, you can stop the set of EXECUTE commands by
pressing Ctrl+C.

Example 1:
Assume the script Printit contains the following:

.KEY filename
RUN COPY <filename> TO PRT: +
ECHO "Printing of <filename> done"

Script Commands 5-11

The following command:
1> EXECUTE Printit Test/Prg

responds as though you entered the following commands at the
keyboard:

1> RUN COPY Test/Prg TO PRT: +
ECHO "Printing of Test/Prg done"

Note the use of the plus sign at the end of the first line. If you press
Return after a plus sign, the RUN command also executes the
command in the second line when the first command is finished.

Example 2:

Another example, Show, uses more of the features described above:
.KEY name/A
IF EXISTS <name>
TYPE <name> NUMBER ;if file is in the given directory

;type it with line numbers
ELSE
ECHO "<name> is not in this directory"

END IF
The command:

1> EXECUTE Show Work/Docfile
displays the Work/Docfile file, with line numbers on the screen, if
Show exists in the current directory. If the file is not there, the
screen displays an error message. The /A requires a file name be
given on the command line after Show or an error occurs.

Interactive Script Files
You can create scripts that pause to request information from the
user before continuing. The REQUESTCHOICE or REQUESTFILE
commands for creating standard Amiga requesters let you use the
familiar Workbench approach to get a user's response. This can
accommodate variable conditions with a single script. For example,
the following script copies six files from a hard drive to a floppy disk.
When the six files are copied, the script asks for confirmation to
continue the copy, allowing time to insert a new floppy disk into the
disk drive if required.

5-12 Script Commands

COPY 2k.eps DFO:
COPY 2m.eps DFO:
COPY 2n.eps DFO:
COPY 2o.eps DFO:
COPY 2t.eps DFO:
COPY 2v.eps DFO:
ECHO "Chapter 2 files copied."
ASK "Continue Copy?"
IF WARN

COPY 3a.eps DFO:
COPY 3c.eps DFO:
COPY 3g.eps DFO:
COPY 3aa.eps DFO:
COPY 3bb.eps DFO:
COPY 3ff.eps DFO:

END IF
At the "Continue Copy?" prompt, press Y to copy the remaining files
to a disk in DFO:. Press N or Return to terminate the copy process.

Repeating Commands
You can create scripts that repeat the same command, substituting a
different file name in each command line. For example, to rename
eight files in one operation you could create the following script:

RENAME sectionl chapl.1
RENAME section2 chapl.2
RENAME section3 chapl.3
RENAME section4 chapl.4
RENAME section5 chapl.5
RENAME section6 chapl.6
RENAME section7 chapl.7
RENAME section8 chapl.8

This example assumes that the files are in the Shell's current
directory. If not, you must specify the complete path to each file.

Scripts such as this can often be generated automatically by using the
LFORMAT option of the LIST command.

Ending a Script
In general, scripts end when they have completed all the specified
commands. Return codes report whether executed commands

Condition Flags 5-13

succeeded or failed. You can include a QUIT command in a script to
end it, but unless there is a specific condition under which you wish
the script to end, including QUIT is not necessary. You can stop a
script by pressing Ctrl+D in the window in which it is running.

Condition Flags
Condition flags indicate the condition upon which a particular
command stops running. When commands are executed, return codes
report if they succeeded or failed. The standard return codes are:

0 The command succeeded.
5 Represents a caution, usually indicating that some type of error

occurred. The error, however, was not serious enough to abort the
command. If the command is part of a script, subsequent commands
are executed. Several commands set the condition flag to WARN to
specify a non-error command outcome.

10 Represents an error. A return code of 10 aborts a script, unless a
higher limit has been set with the FAILAT command.

20 Represents a failure.

Other values may be returned by applications. In such cases, the
previously listed values are considered lower limits of the specified
condition as follows:

0-4 No Error
5-9 Warn
10-19 Error
20 or above Failure

Some commands, such as ASK and SEARCH, use the WARN flag to
signal certain conditions for testing in scripts.

For example, in the COPY script on page 5-12, the ASK command
requests confirmation to continue the copy:

ASK "Continue Copy?"
IF WARN

COPY 3a.eps DF0:

5-74 Debugging Script Files

Pressing Y sets the condition flag to 5 (WARN), executing the IF
block. Pressing N or Return sets the condition flag to 0 (NO ERROR),
aborting the script because the IF statement did not receive the
specified return code.

Debugging Script Files
If a script command fails, you may see one of the following error
messages:

Unknown command <command>
This occurs when you have entered a command that is
unrecognizable.

<command> failed returncode 20
This occurs when a valid command's arguments are entered
incorrectly. Enter WHY at the prompt after the error appears for
more information about the error.

If an error appears, use your text editor (ED, MEmacs, or a word
processor that can save ASCII files) to correct the line containing that
command.

Inserting the line SET ECHO ON within the script assists in locating
errors. This causes all subsequent command lines to be ECHOed to
the screen as they are executed. Error messages are printed after the
system tries to execute the incorrect command. To disable SET
ECHO, enter SET ECHO OFF or delete the SET ECHO ON line.

Using Environment Variables
Environment variables are used in scripts to hold status and string
information. Variables can be substituted for strings that are long
and tedious to enter. Changing the value of the variable is more
convenient than re-editing the script when the value for the string
changes.

Environment variables are maintained by AmigaDOS rather than
individual applications. These variables can be accessed and used by

Using Environment Variables 5-15

different programs or scripts. When a variable name preceded by a
dollar sign ($) is encountered in a script, the variable name is
replaced by the value assigned to the variable. The line is then
executed as if you had originally entered the value.

For example, AmigaDOS maintains the variables Workbench and
Kickstart that track the current version numbers of your Workbench
and Kickstart software. Running the following line prints the
Workbench version number:

ECHO "Amiga Workbench Disk. Release Version
$Workbench"

Some variables, such as the Workbench and Kickstart variables, have
already been created. The Shell responds to the ECHO variable and
maintains the PROCESS, RC, and RESULT2 local variables
automatically. These are explained as follows:

ECHO

PROCESS
RC

RESULT2

When the value of this variable is ON, commands are
echoed to the screen when they are executed. When it is
OFF (the default), commands are not echoed.
Holds the process (CLI) number.
Holds the condition flag return code of the last command
executed (0, 5, 10, or 20). This is often used in scripts.
Holds the secondary return code, or error number, that
explains why a command failed.

For example, if you include the SET ECHO ON command at the
beginning of a script, each line of the script is echoed to the screen as
it is executed.

When an environment variable is given a numeric value, it can be
used in calculations and expressions. For example, if you assign the
value 9 to a variable called nine, use $nine in EVAL expressions. For
example:

1> SETENV nine 9
1> EVAL 5 * $nine
45

EVAL is an AmigaDOS command that evaluates integer and Boolean
expressions. However, it does not work on environment variables
that have a fractional numeric value; be sure to use whole numbers
when using EVAL.

5-16 Using Environment Variables

Creating Environment Variables
Environment variables can be created with the SET and SETENV
commands.

SET
SET creates local variables, which are recognized only by the Shell in
which they are created and any Shells created by that original Shell.
For example, if you are creating an environment variable in your
Shell window, then execute the NEWSHELL command through the
Execute Command menu item, the new Shell does not recognize any
of the variables created in your original Shell. However, if you open a
second Shell by entering the NEWSHELL command in your original
Shell, the new Shell recognizes any variables created in its parent
Shell.

Using the GET command displays the value associated with a
variable; using the UNSET command removes variables.

SETENV
SETENV creates global variables recognized by all Shells. Global
variables are stored as small ASCII files in the ENV: directory.
GETENV displays the value associated with global variables and
UNSETENV removes global variables. Use global variables only
when certain values must be available to other processes.

Some applications use environment variables. For example, the
MORE program supports an Editor environment variable. You can
use SETENV to specify MEmacs as your editor of choice:

1> SETENV Editor Extras:Tools/MEmacs
Be sure to specify the complete path to MEmacs.

If you use MORE to view the contents of the User-startup file,
pressing Shift+E automatically transfers to a MEmacs screen with
the User-startup loaded and ready for editing.

Chapter 6

AmigaDOS Command
Reference

The commands in this chapter are executed from the Shell window.
They are described in alphabetic order; however, some commands
reserved for system use appear together at the end of the chapter.

The following table provides a complete alphabetical reference to all
of the commands in this chapter, their purpose, and the page on
which they appear:

Command Purpose Page

ADDBUFFERS Instructs the file system to add or display
cache buffers for a drive.

6-10

ADDDATATYPES Builds a list of data types (system
command).

6-92

ALIAS Sets or displays command aliases. 6-11
ASK Gets yes/no user input during script file

execution.
6-12

ASSIGN Controls assignment of logical devices. 6-13
AVAIL Reports the amount of memory available. 6-17
BINDDRIVERS Activates device drivers in Expansion

drawer (system command).
6-92

BREAK Sets attention flags in the specified
process.

6-18

CD Sets or displays the current directory. 6-19
CHANGETASKPRI Changes priority of Shell processes. 6-21

6-2 AmigaDOS Command Reference

Command
(cont'd)

Purpose
(cont'd)

Page
(cont'd)

CONCLIP Moves data between the console windows
and the clipboard (system command).

6-93

COPY Copies files or directories. 6-22
CPU Sets or displays processor options. 6-24
DATE Sets or displays the system date and time. 6-26
DELETE Deletes files or directories. 6-28
DIR Displays a sorted list of the files in a

directory.
6-29

DISKCHANGE Informs the Amiga that the disk in a disk
drive has changed.

6-32

ECHO Displays a string. 6-32
ED Edits text files. 6-33
EDIT Edits text files (line editor). 6-34
ELSE Specifies an alternative for an IF

statement in a script file.
6-34

ENDCLI Ends a Shell process. 6-35
ENDIF Terminates an IF block in a script file. 6-35
ENDSHELL Ends a Shell process. 6-36
ENDSKIP Terminates a SKIP block in a script file. 6-36
EVAL Evaluates integer or Boolean expressions. 6-37
EXECUTE Executes a script with optional argument

substitution.
6-38

FAIL AT Instructs a command sequence not to fail
unless a given value is returned.

6-39

FAULT Prints messages for the specified error
numbers.

6-40

FILENOTE Attaches a comment to a file. 6-41
GET Gets the value of a local variable. 6-42
GETENV Gets the value of a global variable. 6-43

AmigaDOS Command Reference 6-3

Command
(cont'd)

Purpose
(cont'd)

Page
(cont'd)

ICONX Allows execution of a script file from an
icon.

6*43

IF Evaluates conditional operations in script
files.

6-45

INFO Gives information about mounted devices. 6-46
INSTALL Writes or checks a disk boot block. 6-47
IPREFS Monitors system Preferences (system

command).
6-93

JOIN Concatenates two or more files into a new
file.

6-48

LAB Specifies a label in a script file. 6-48
LIST Lists specified information about

directories and files.
6-49

LOADRESOURCE Preloads resources into memory to avoid
excessive disk swaps.

6-52

LOADWB Starts Workbench. 6-53
LOCK Sets the write-protect status of a device. 6-54
MAGTAPE Rewinds or skips forward SCSI tapes. 6-55
MAKEDIR Creates a new directory. 6-55
MAKELINK Creates a link between file names. 6-56
MOUNT Makes a device connected to the system

available.
6-57

NEWCLI Opens a new Shell window. 6-58
NEWSHELL Opens a new Shell window. 6-59
PATH Controls the directory list that the Shell

searches to find commands.
6-62

PROMPT Changes the prompt string of the current
Shell.

6-63

PROTECT Changes the protection bits of a file or
directory.

6-64

QUIT Exits from a script file with a specified
return code.

6-66

6-4 AmigaDOS Command Reference

Command
(cont'd)

Purpose
(cont'd)

Page
(cont'd)

RELABEL Changes the volume name of the disk in
the given drive to the specified name.

6-67

REMRAD Removes the recoverable RAM disk RAD:. 6-68
RENAME Changes the name of or moves a file or

directory.
6-68

REQUESTCHOICE Allows AmigaDOS and ARexx scripts to
use custom requesters.

6-69

REQUESTFILE Allows AmigaDOS and ARexx scripts to
use a file requester.

6-70

RESIDENT Displays and modifies the list of resident
commands.

6-72

RUN Executes commands as background
processes.

6-74

SEARCH Looks for the specified text string in the
files of the specified directories.

6-76

SET Sets a local variable. 6-77
SETCLOCK Sets or reads the battery backed-up

hardware clock.
6-78

SETDATE Changes the timestamp of a file or
directory.

6-79

SETENV Sets a global variable. 6-79
SETFONT Sets the font for the Shell. 6-80
SETKEYBOARD Sets the keymap for the Shell. 6-81
SETPATCH Makes ROM patches in system software

(system command).
6-94

SKIP Skips to a label when executing script
files.

6-82

SORT Alphabetically sorts the lines of a file. 6-84
STACK Displays or sets the stack size within the

current Shell.
6-85

STATUS Lists information about Shell processes. 6-85

AmigaDOS Command Reference 6-5

Command Purpose Page
(cont'd) (cont'd) (cont'd)

TYPE Displays the contents of a file. 6-86
UNALIAS Removes an alias. 6-87
UNSET Removes a local variable. 6-87
UNSETENV Removes a global variable. 6-88
VERSION Displays software version and revision

numbers.
6-88

WAIT Waits for the specified time. 6-89
WHICH Searches the command path for a

particular item.
6-90

WHY Prints an error message that explains why
the previous command failed.

6-91

Command Documentation
Each command documented in this manual is shown with the format,
arguments, options, symbols, and abbreviations required for proper
use.

This chapter and Chapter 7 provide command specifications for the
AmigaDOS commands and the Workbench programs accessible
through the Shell using the following standard outline:

Format All the arguments and options accepted by a command. The
special characters that indicate the particular type of argument
are described on page 6-6.

Template An optional on-line reminder of the command's format that is
embedded in the program's code. Entering a command
followed by a space and a question mark (for example,
dir ?) displays the template. A complete description of the
template notation is found on page 6-8.

Location The directory where the command is normally stored.

6-6 AmigaDOS Command Reference

Examples A sample use of the command. Examples are displayed in
the Courier typeface to distinguish them from normal text.
The l> represents the Shell prompt; do not type it as part of
the example command. Lines in the example not prefaced by
l> represent the output of a command. Command names
and keywords are shown in all upper case letters and file and
directory names usually have the first letter in upper case;
however, they do not need to be entered that way. Press
Return to execute the command line.

Separate commands and arguments with spaces. Use punctuation
only when required in the syntax of specific commands.

Format
The following lists the characters that indicate the type of argument
shown in format listings. Do not use these characters as part of the
command.

< > Angle brackets indicate where additional information, such as
a file name, must be included. This argument is required if it
is not surrounded by square brackets. (For example,
[<filename>]; see below.)

[] Square brackets enclose optional arguments and keywords.
Although not required, these arguments and keywords are
accepted by the command.

{ } Braces enclose items that can be given once or repeated any
number of times. For example, {<args>} indicates that several
items can be given for this argument.

I Vertical bars separate lists of options from which you can
choose only one. For example, [OPT RISIRS] indicates a
choice of the R option, the S option, or both options.

<n> A numeric value is expected by the argument.
K E Y W O R D Italics indicate that the argument's keyword is required if you

include that argument.

AmigaDOS Command Reference 6-7

An ellipsis (...) after a string argument indicates that the string
must be the final argument on the command line. Including a
comment is not allowed. The remainder of the command line
is taken as the desired string. Quotation marks are not
needed around the string, even if it contains spaces. If you
enter quotation marks, they are part of the string. If you
specify the keyword, you can put leading and trailing spaces
in the string.

command On command lines that are long enough to wrap to the next
line line, this manual shows the wrapped lines as indented for
indentation documentation purposes only. In practice, the wrapped lines

align with the first character of the Shell prompt.

The format for the COPY command illustrates the use of these
conventions:

COPY[FROM]{<narae|pattern>}[TO]cname|pattern>[ALL]
[QUIET][B U F IB U F F E R = < n>][CLONE][DATES][NOPRO]
[COM][NOREQ]

The [FROM] keyword is optional. If it is not specified, the command
reads the file name or pattern to copy by its position on the command
line.

The {cname | pattem>l argument must be provided. You must
substitute either a file name or pattern. The braces indicate that
more than one name or pattern can be given.

The [TO] keyword is optional. If it is not specified, the command
reads the file name or device to copy to by its position on the
command line.

The cname | pattem> argument must be provided. You can specify
only one destination.

The [ALL], [QUIET], [CLONE], [DATES], [NOPRO], [COM], and
[NOREQ] arguments are optional.

The [BUF\BUFFER=<n>] argument is optional. If given, the
keyword is required, but you can use either BUF or BUFFER with
the numerical argument. For example, both BUF=5 and BUFFER=5
are acceptable. The numerical argument can also be entered without
the equals sign; spaces are optional.

6-8 AmigaDOS Command Reference

Template
The Template is built into the system to serve as an on-line reminder
of a command's syntax and to let you run the command from the
Template line by providing a prompt at which you enter the
command's arguments.

Display the Template by entering a question mark (?) after a
command. The Shell assumes that you wish to run the command and
it expects you to enter the command's arguments after the colon
following the display. For example:

1> TYPE ?
FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S:

Pressing Return executes the command if it does not require any
arguments to run properly. Entering the arguments and their
respective keywords and then pressing Return also executes the
command. If a command requires arguments and you do not supply
them or if you enter anything other than the required arguments,
pressing Return results in a non-fatal error message. Remember that
you do not need to enter the entire format for a command at this
prompt, just the required arguments.

The Templates are listed with the arguments separated by commas,
followed by a slash (/), and a capital letter indicating the type of
argument. These slash/letter combinations are displayed to remind
you of the command's particular requirements and are not entered as
part of the command. The following table explains the notation:

Template Format Meaning
Notation Equivalent

argument/A <name>
option/K KEYW ORD

option/S [KEYWORD]

value/N <n>

The argument is always required.
The option's keyword is required if the
argument is given.
The option works as a switch. The name
of the option must be entered to specify it.
Most options are switches.
The argument is numeric.

AmigaDOS Command Reference 6-9

Template Format Meaning
Notation Equivalent (cont'd)
(cont'd) (cont'd)

argument/M {<name>} Multiple items are accepted for this
argument. Although there is no limit to
the number of possible arguments, they
must be provided before the next
argument or option.
The string must be the final argument on
the command line; the remainder of the
command line is taken as the desired
string.
Two different forms of the keyword are
equivalent and either are accepted. The
equals sign is not entered as part of the
command.

string/F argument...

KYWD I
KEYWORD

The Template for the COPY command illustrates the use of
arguments:

FROM/M,TO/A,ALL/S,QUIET/S,BUF=BUFFER/K/N,
CLONE/S,DATES/S #NOPRO/S,COM/S,NOREQ/S

FROM/M indicates that the argument is required and more than one
argument is acceptable.

TO/A indicates that the argument is required.

ALL/S, QUIET/S, CLONE/S, DATES/S, NOPRO/S, COM/S, and
NOREQ/S indicate that the keywords act as switches. If the keyword
is present in the line, the option is used.

BUF=BUFFER/K/N indicates that the BUF or BUFFER keyword (/K)
is required to specify this numerical (/N) argument. Both BUF and
BUFFER are acceptable keywords (=).

Keywords and their arguments can be linked with an equals sign (=)
to ensure correct assignments in complex cases. For example,
BUF=20.

6-10 AmigaDOS Command Reference

Command Listing

ADDBUFFERS
Instructs the file system to add or display cache buffers for a drive.

Format ADDBUFFERS <drive> [<n>]

Template DRIVE/A, BUFFERS/N

Location C:

ADDBUFFERS adds <n> buffers to the list of buffers available for
<drive>. Although adding buffers speeds disk access, each additional
buffer reduces free memory by approximately 512 bytes. The default
buffer allocation is 5 for floppy drives and 30 for hard disk partitions.

The amount of extra available memory dictates the number of buffers
you can add. There is no fixed upper limit; however, adding too many
buffers reduces overall system performance by taking RAM away
from other system functions. Specifying a negative number subtracts
that many buffers from the current allocation. The minimum number
of buffers is one; however, using only one is not recommended.

Twenty buffers are recommended for a floppy drive in a 512 KB
system. Use the default value recommended by the HDToolbox
program for hard disks. (Display this value by selecting the
Advanced Options gadget on the Partitioning screen.)

If only the <drive> argument is specified, ADDBUFFERS displays the
number of buffers currently allocated for that drive.

Example:
1> ADDBUFFERS DFO:
DFO: has 5 buffers

A further example of ADDBUFFERS appears in Chapter 8.

AmigaDOS Command Reference 6-11

ALIAS
Sets or displays command aliases.

Format ALIAS [<name>] [<string...>]

Template NAME,STRING/F

Location Internal

ALIAS creates aliases, or alternative names, for AmigaDOS
commands. ALIAS can be used to abbreviate frequently used
commands or replace standard command names with different
names.

When AmigaDOS encounters <name>, it replaces it with the defined
<string>, integrates the result with the rest of the command line, and
attempts to interpret and execute the resulting line as an AmigaDOS
command. <Name> is the alias for the command and <string> is the
command to be substituted for the alias.

An alias must be entered at the beginning of the command line. You
can enter arguments after the alias, but you cannot create an alias to
represent a series of command arguments. For example, in the
following command line:

1> NEWSHELL WINDOW=CON:0/250/640/150/2SHELL/CLOSE
the WINDOW argument cannot be replaced with an alias.

You can substitute a file name or other instruction within an alias by
placing square brackets ([]) with nothing between them in the
<string>. Any argument entered after the alias is inserted at the
brackets.

ALIAS <name> displays the <string> for that alias. Entering ALIAS
alone lists all current aliases.

Aliases are local to the Shell in which they are defined. If you create
another Shell with the NEWSHELL command, it shares the same
aliases as its parent Shell. However, if you create another Shell with
the Execute Command menu item, it does not recognize aliases
created in your original Shell. A global alias that is recognized by all
Shells can be created by inserting the alias in the Shell-startup file.

To remove an ALIAS, use the UNALIAS command.

6-12 AmigaDOS Command Reference

Example 1:
1> ALIAS dl DIR DF1:

Entering d l displays a directory of the contents of the disk in DF1:, as
if you entered DIR DF1:.

Example 2:
1> ALIAS hex TYPE [] HEX

creates an alias called HEX that displays the contents of a specified
file in hexadecimal format. The empty brackets indicate where the
file name is inserted in this example. Entering:

1> hex Myfile
displays the contents of Myfile in hexadecimal format.

See also: UN ALIAS. Further examples of using ALIAS appear in
Chapter 8.

ASK
Gets yes or no user input during script file execution.

Format ASK <prompt>

Template PROMPT/A

Location Internal

ASK is used in scripts to write the string specified by <prompt> to the
current window and then wait for keyboard input. Valid keyboard
responses are Y (yes), N (no), and Return (no). Selecting Y sets the
condition flag to 5 (WARN). Selecting N or pressing Return sets the
condition flag to 0. Check the response using an IF statement.

If the <prompt> contains spaces, it must be enclosed in quotation
marks.

Example:

Assume a script contained the following commands:
ASK Continue?
IF WARN

ECHO Yes

AmigaDOS Command Reference 6-13

ELSE
ECHO No

END IF
At the ASK command, Continue? is displayed on the screen. If Y is
pressed, Yes is displayed on the screen. If N or a Return alone is
pressed, No is displayed.

See also: IF, ELSE, ENDIF, REQUESTCHOICE, WARN

ASSIGN
Controls assignment of logical device names to files or directories.

Format ASSIGN [<name>:] [(<target>}] [LIST] [EXISTS]
[DISMOUNT] [DEFER] [PATH] [ADD] [REMOVE]
[VOLS] [DIRS] [DEVICES]

Template NAME,TARGET/M,LIST/S,EXISTS/S,
DISMOUNT/S.DEFER/S,PATH/S,ADD/S,
REMOVE/S,VOLS/S,DIRS/S,DEVICES/S

Location C:

ASSIGN allows references to files or directories with short,
convenient logical device names, rather than their usual names or
complete paths. The ASSIGN command can create assignments,
remove assignments, or list some or all current assignments.

If the <name> and (<target>) arguments are given, ASSIGN assigns
the given logical name to the specified target. Each time the assigned
logical device name is referred to, AmigaDOS accesses the specified
target. If the <name> given is already assigned to a file or directory,
the new target replaces the previous one. A colon must be included
after the <name> argument.

If only the <name> argument is given, any existing ASSIGN of a file
or directory to that logical device name is cancelled.

You can assign several logical device names to the same target by
using multiple ASSIGN commands.

You can assign one logical device name to several targets by
specifying each file or directory after the <name> argument or by
using several ASSIGN commands with the ADD option. Specifying

6-14 AmigaDOS Command Reference

the ADD option does not replace any existing target assigned to
<name>. This target is added to the ASSIGN list and the system
searches for all the targets when <name> is encountered. If the first
target is not available, ASSIGN uses the next target added.

The REMOVE option deletes a target name from the ASSIGN list.

If no arguments are given with ASSIGN or if the LIST keyword is
used, a list of all current assignments is displayed. If the VOLS,
DIRS, or DEVICES switch is specified, ASSIGN limits the display to
volumes, directories, or devices.

When the EXISTS keyword is entered with a logical device name,
AmigaDOS searches the ASSIGN list for that name and displays the
volume and directory assigned to that device. If the device name is
not found, the condition flag is set to 5 (WARN).

When the (<target>) argument is given, AmigaDOS immediately
looks for that file or directory. If the ASSIGN commands are part of
the User-startup, the targets must be present on a mounted disk
during the boot procedure. If an assigned target cannot be found, a
requester asks for the volume containing it. However, using the
DEFER and PATH options make the system wait until the target is
needed before searching for it.

Note The assigned name does not have to retain the name of
the file or directory and it does not have to be in upper
case. For example, the name CLIPS: or Clips: can be
assigned to the Ram Disk:Clipboards directory.

The DEFER option creates a late-binding ASSIGN. This ASSIGN
takes effect when the assigned object is first referenced, rather than
when the assignment is made. When the DEFER option is used, the
disk containing the assigned target is not needed until the object is
called. The assignment then remains valid until explicitly changed.

If you ASSIGN FONTS: to DF0:Fonts with the DEFER option, the
system associates FONTS: with the disk that is in DFO: when
FONTS: is referred to. For example, if you have a Workbench disk in
DFO: at the time the FONTS: directory is needed, the system
associates FONTS: with that particular Workbench disk. If you later
remove that Workbench disk and insert another disk containing a

AmigaDOS Command Reference 6-15

Fonts directory, the system specifically requests the original
Workbench disk the next time FONTS: is needed.

The PATH option creates a non-binding ASSIGN. A non-binding
ASSIGN acts like a DEFERred ASSIGN, except that it is re-evaluated
each time the assigned name is referenced. For example, if you
assign FONTS: to DF0:Fonts with the PATH option, any disk in DFO:
is searched when FONTS: is referenced. As long as the disk contains
a Fonts directory, it satisfies the ASSIGN. You cannot assign
multiple directories with the PATH option.

Floppy disk only system users can find that using the PATH option
eliminates the need to reinsert the original Workbench disk used to
boot the system. As long as the drive you assigned with the PATH
option contains a disk with the assigned directory name, the system
uses that disk.

The DISMOUNT option disconnects a volume or device from the list
of mounted devices. You must provide the device name in the
argument. DISMOUNT removes the name from the list, but does not
free resources. You cannot cancel a DISMOUNT without rebooting.
DISMOUNT is meant for use by software developers only and can
cause a software failure if not used carefully.

Example 1:
1> ASSIGN FONTS: MyFonts:Fontdir

assigns the FONTS: directory to Fontdir on MyFonts:.

Example 2:
1> ASSIGN LIST
Volumes:
Ram Disk [Mounted]
Workbench [Mounted]
MyFonts [Mounted]
Directories:
LOCALE
KEYMAPS
PRINTERS
REXX
CLIPS
ENV
T
ENVARC

Workbench:Locale
Workbench:Devs/Keymaps
Workbench:Devs/Printers
Workbench:S
Ram Disk:Clipboards
Ram DiskiEnv
Ram Disk:T
Workbench:Prefs/Env-Archive

6-16 AmigaDOS Command Reference

SYS
C
S
L
FONTS
DEVS
LIBS

Workbench:
Workbench:C
Workbench:S
Workbench:L
MyFonts:Fontdir
Workbench:Devs
Workbench:Libs

+ Workbench:Classes
Devices:
PIPE AUX RAM CON
RAW PAR SER PRT DFO

shows a typical list of all current assignments. The plus sign
indicates any additional directories with the same assignment.

Example 3:
1> ASSIGN FONTS: EXISTS
FONTS: MyFonts:FontDir

is an inquiry into the assignment of FONTS:. AmigaDOS responds by
showing that FONTS: is assigned to the FontDir directory of the
MyFonts volume. The return code is set to 0 if it exists or to 5 if it
does not.

Example 4:
1> ASSIGN LIBS: SYS:Libs BigAssem:Libs ADD

is a multiple-directory assignment that creates a search path
containing two Libs directories. Specifying ADD keeps the standard
SYS:Classes assignment from being removed. These directories are
searched in sequence each time LIBS: is invoked.

Example 5:
1> ASSIGN DEVS:

removes the DEVS: assignment from the system.

AmigaDOS Command Reference 6-17

Example 6:
1> ASSIGN WorkDisk: DFO: DEFER
1> ASSIGN WorkDisk: EXISTS
WorkDisk <DF0:>

sets up a late-binding assignment of the logical device WorkDisk:.
Until the first time you refer to the name WorkDisk:, you do not need
to insert it in DFO: ASSIGN shows DFO: enclosed in single brackets to
indicate that it is DEFERred. After the first reference to WorkDisk:,
the volume name of the disk that was in DFO: replaces <DF0:>.

Example 7:
1> ASSIGN C: DF0:C PATH
1> ASSIGN C: EXISTS
C [DFO:C]

references the C directory of the disk that is in DFO: when a command
is searched for. ASSIGN shows DF0:C in square brackets to indicate
that it is a non-binding ASSIGN.

Example 8:
1> ASSIGN LIBS: ZCad:Libs ADD

adds ZCad:Libs to the list of directories assigned as LIBS:.

Example 9:
1> ASSIGN LIBS: ZCad:Libs REMOVE

removes ZCad:Libs from the list of directories assigned as LIBS:.

For more examples using ASSIGN, see Chapter 8.

AVAIL
Reports the amount of Chip and Fast memory available.

Format AVAIL [CHIP | FAST | TOTAL] [FLUSH]

Template CHIP/S,FAST/S,TOTAL/S,FLUSH/S

Location C:

6-18 AmigaDOS Command Reference

AVAIL gives a summary of the system RAM, both Chip and Fast. For
each memory type, AVAIL reports the total amount of memory, how
much is available, how much is currently in use, and the largest
contiguous memory block not yet allocated.

Unless you want a complete summary, use the CHIP, FAST, and/or
TOTAL options to have AVAIL display only the number of free bytes
of Chip, Fast, or Total RAM available.

The FLUSH option frees memory by removing all unused libraries,
devices, fonts, catalogs.

Example 1:
1> AVAIL
Type Available In-Use Maximum Largest
chip 233592 282272 515864 76792
fast 341384 182896 524280 197360
total 574976 465168 1040144 197360

A complete summary of system RAM is displayed.

Example 2:
1> AVAIL CHIP
233592

The number of free bytes of Chip RAM is displayed.

See Chapter 8 for more examples using AVAIL.

BREAK
Sets attention flags in the specified process.

Format BREAK <process> [ALL | C | D | E | F]

Template PROCESS/A/N,ALL/S,C/S,D/S,E/S,F/S

Location C:

BREAK sets the specified attention flags in the <process> indicated.
Use the STATUS command to display the current process numbers.
C sets the Ctrl+C flag, D sets the Ctrl+D flag, and so on. ALL sets all
the flags from Ctrl+C to Ctrl+F. By default, only the Ctrl+C flag is
set.

AmigaDOS Command Reference 6-19

BREAK acts the same as selecting the relevant process by clicking in
its window and pressing the appropriate Ctrl+key combinations.

Ctrl+C is the default for sending a BREAK signal to halt a process. A
process that has been aborted this way displays ***Break in the
Shell window. Ctrl+D halts execution of a script file. The STATUS
command displays the current process numbers. Ctrl+E is undefined.

Ctrl-f F is used by programs that open windows to activate their
window and bring it to the front of all windows. Not all programs
respond to Ctrl+F.

Example 1:
1> BREAK 7

sets the Ctrl+C attention flag of process 7. This is the same as
selecting process 7 and pressing Ctrl+C.

Example 2:
1> BREAK 5 D

sets the Ctrl+D attention flag of process 5.

See also: STATUS

CD
Sets or displays the current directory.

Format CD [<dir | pattem>]

Template DIR

Location Internal

CD with no arguments displays the name of the current directory.
When a valid directory name is given, CD makes the named directory
the current directory.

You must specify a complete path to the directory since CD does not
search through the disk for it. If CD cannot find the specified
directory in the current directory or in the given path, a Can11 find
<directory> message is displayed.

6-20 AmigaDOS Command Reference

To move up a level in the filing hierarchy to the parent directory of
the current directory, enter CD followed by a space and a single slash
(/). You can move to another directory in the parent at the same time
by including its name after the slash. If the current directory is a root
directory, CD / has no effect. Use multiple slashes with no spaces
between them to refer to additional higher levels.

To move directly to the root directory of the current device, use CD
followed by a space and a colon; for example, CD :.

AmigaDOS supports an implied CD so that the CD command itself
can often be left out. Enter the directory name, path, colon, or slashes
at the prompt.

CD also supports pattern matching. When a directory matching the
specified pattern is found, it becomes the current directory. If more
than one directory matches the given pattern, an error message is
displayed. You cannot use pattern matching with implied CD. For
more information on pattern matching, see Chapter 3.

Example 1:
1> CD DF1:Work

sets the current directory to the Work directory on the disk in drive
DF1:.

Example 2:
1> CD SYS:Com/Basic

makes the subdirectory Basic in the Com directory the current
directory.

Example 3:
l > //

using the implied CD, moves up two levels in the directory structure.

Example 4:
1> CD SYS:Li#?

uses the #? pattern to match with the LIBS: directory.

For more examples using the CD command, see Chapter 8.

AmigaDOS Command Reference 6-21

CHANGETASKPRI
Changes the priority of a currently running process.

Format CHANGETASKPRI <priority> [PROCESS <process
number>]

Template PRI=PRIORITY/A/N,PROCESS/K/N

Location C:

CHANGETASKPRI changes the priority of the specified Shell
process. If no process is specified, the current Shell process is
assumed. Any shell process started from <process number> inherits
its priority.

Use the STATUS command to display the current process numbers.

The range of acceptable values for <priority> is the integers from -128
to 127, with higher values yielding a higher priority (a greater
proportion of CPU time is allocated). However, do not enter values
above +10 to avoid disrupting important system tasks.

Example:
1> CHANGETASKPRI 4 Process 2

The priority of Process 2 is changed to 4. Any shell process started
from this Shell also has a priority of 4. They have priority over any
other user tasks created without using CHANGETASKPRI (those
tasks have a priority of 0).

See also: STATUS. For another example for using
CHANGETASKPRI, see Chapter 8.

6-22 AmigaDOS Command Reference

COPY
Copies files or directories.

Format COPY [FROM] {cname | pattem>) [TO] <name>
[ALL] [QUIET] [BUF\BUFFER=<n>] [CLONE]
[DATES] [NOPRO] [COM] [NOREQ]

Template FROM/M,TO/A,ALL/S,QUIET/S,
BUF=BUFFER/K/N,CLONE/S,DATES/S,
NOPRO/S, COM/S, NOREQ/S

Location C:

COPY copies the file or directory specified with the FROM argument
to the file or directory specified by the TO argument. You can copy
several items at once by giving more than one name/pattem in the
FROM argument; they should be separated by spaces. If the FROM
argument is a pattern or consists of multiple names, the TO
argument must be a directory.

If a TO file name already exists, COPY overwrites the TO file with
the FROM file. You can use a pair of double quotation marks ("") to
refer to the current directory. When used as the FROM argument,""
copies all the files in the current directory. Do not put any spaces
between the double quotation marks.

If the FROM argument is a directory, only the directory's files are
copied; its subdirectories are not copied. Use the ALL option to copy
the complete directory, including its files, subdirectories, and the
subdirectories' files. It is possible to create a directory as you copy if
you are copying more than one file. To give the new directory a name,
specify the directory name as the last component in the TO
argument's path. This can be any name, including the same name as
the original if it is on a different path.

COPY prints to the screen the name of each file as it is copied. This
can be overridden by the QUIET option.

The BUF= option is used to set the number of 512-byte buffers used
during the copy. (Default is 128 buffers, 64 KB of RAM.) Limit the
number of buffers when copying to RAM:. BUF=0 uses a buffer the
same size as the file to be copied.

AmigaDOS Command Reference 6-23

By default, COPY gives a TO file the timestamp of when the copy was
made, rather than that of the original file. Also by default, comments
attached to the original FROM file are not copied and the protection
bits of the FROM file are copied to the TO file. You can override these
defaults using the following:

CLONE The timestamp, comments, and protection bits of the FROM
file are copied to the TO file.

DATES The timestamp of the FROM file is copied to the TO file.
COM Any comment attached to the FROM file is copied to the TO

file.
NOPRO The protection bits of the FROM file are not copied to the TO

file. The TO file is given standard protection bits of r, w, e,
and d.

COPY displays a requester if the COPY cannot continue. When the
NOREQ option is given, all requesters are suppressed. Use this in
scripts to prevent a COPY failure from stopping the script to wait for
a response. With the NOREQ option, the COPY command is aborted
and the script continues.

Example 1:
1> COPY Filel TO :Work/File2

copies Filel in the current directory to the Work directory in the root
of the current device, renaming it File2.

Example 2:
1> COPY Chapter#? TO DF1:Backup

copies all the files whose names start with Chapter in the current
directory to the Backup directory on the disk in DF1:. The Backup
directory is created if it does not already exist.

Example 3:
1> COPY Work:Test TO

copies the files in the Test directory on Work to the current directory;
subdirectories in Test are not copied.

6-24 AmigaDOS Command Reference

Example 4:
1> COPY Work:Test TO DFO:Test ALL

copies all the files and any subdirectories of the Test directory on
Work to the Test directory on DFO:. If a Test directory does not
already exist on DFO:, COPY creates one.

Example 5:
1> COPY DFO: TO DF1: ALL QUIET

copies all files and directories on the disk in DFO: to DF1:, without
displaying on the screen any file/directory names as they are copied.
(For disks less than half full, this can be faster than DiskCopy.)

For more examples using COPY, see Chapter 8.

CPU
Sets or displays processor options.

Format CPU [CACHE | NOCACHE] [BURST | NOBURST]
[DATACACHE | NODATACACHE]
[DATABURST | NODATABURST]
[INSTCACHE | NOINSTCACHE]
[INSTBURST | NOINSTBURST]
[FASTROM | NOFASTROM] [TRAP | NOTRAP]
[COPYBACK | NOCOPYBACK]
[EXTERNALCACHE | NOEXTERNALCACHE]
[NOMMUTEST] [CHECK 680101680201680301
680401688811688821688511MMU | FPU]

Template CACHE/S.BURST/S,NOCACHE/S,NOBURST/S,
DATACACHE/S,NODATACACHE/S,
DATABURST/S, NODATABURST/S,
INSTCACHE/S.NOINSTCACHE/S,
INSTBURST/S,NOINSTBURST/S,COPYBACK/S,
NOCOPYBACK/S,EXTERNALCACHE/S,
NOEXTERNALCACHE/S.FASTROM/S,
N OFASTROM/S .TRAP/S ,N OTRAP/S,
NOMMUTEST/S.CHECK/K

Location C:

AmigaDOS Command Reference 6-25

CPU adjusts various options of the microprocessor installed in your
Amiga. CPU also shows the processor and options that are currently
enabled.

Many options only work with certain members of the 680x0 processor
family. The 68020 has a special type of memory known as instruction
cache. When instruction cache is used, instructions are executed
more quickly. The 68030 and 68040 have two types of cache memory:
instruction and data.

If mutually exclusive options are specified, the safest option is used.
Availability of the following options depends on the type of
microprocessor present.

CACHE
NOCACHE
BURST

NOBURST
DATACACHE
NODATACACHE
DATABURST
NODATABURST
INSTCACHE
NOINSTCACHE
INSTBURST
NOINSTBURST
FASTROM

NOFASTROM
TRAP
NOTRAP
COPYBACK
NOCOPYBACK

Turns on all caches.
Turns off all caches.
Turns on burst mode for both data and
instructions.
Turns off burst mode for data and instructions.
Turns on data cache.
Turns off data cache.
Turns on burst mode for data.
Turns off burst mode for data.
Turns on instruction cache.
Turns off instruction cache.
Turns on burst mode for instructions.
Turns off burst mode for instructions.
With a processor having a supported MMU, copies
the system ROM into 32-bit RAM, making access
to operating system functions significantly faster.
CPU then write-protects the RAM area so that the
data cannot be changed.
Turns off FASTROM.
This option is for developers only.
This option is for developers only.
Turns on 68040 copyback cache.
Turns off 68040 copyback cache.

6-26 AmigaDOS Command Reference

EXTERNALCACHE Turns on external cache.
NOEXTERNALCACHE Turns off external cache.
NOMMUTEST Allows the MMU settings to be changed without

checking to see if an MMU is currently in use.

The CHECK option, when given with a keyword (68010, 68020,
68030, 68040, 68881, 68882, or 68851, MMU, FPU) checks for the
presence of the processor indicated by the keyword.

Examples:
1> CPU
System: 68030 68881 (INST: Cache Burst) (DATA:
Cache NoBurst)
1> CPU NODATACACHE FASTROM
System: 68030 68881 FastROM (INST: Cache Burst)
(DATA: NoCache NoBurst)
1> CPU NOBURST DATACACHE NOINSTCACHE
System: 68030 68881 (INST: NoCache NoBurst) (DATA:
Cache NoBurst)

DATE
Displays or sets the system date and/or time.

Format DATE [<day>] [<date>] [<time>] [TO \ VER
<filename>]

Template DAY,DATE,TIME,TO=VER/K

Location C:

DATE with no argument displays the currently set system time and
date, including the day of the week. Time is displayed using a
24-hour clock.

DATE <date> sets only the date. The format for entry and display of
<date> is DD-MMM-YY (day-month-year). The hyphens between the
arguments are required. A leading zero in the date is not necessary.
The number or the first three letters of the month (in English) must
be used, as well as the last two digits of the year.

AmigaDOS Command Reference 6-27

If the date is already set, you can reset it by specifying a day name.
You can also use tomorrow or yesterday as the <day> argument. You
cannot specify a day name to change the date to more than seven
days into the future.

DATE <time> sets the time. The format for entry and display of
<time> is HH:MM:SS (hours:minutes:seconds). Seconds is optional.

If your Amiga does not have a battery backed-up hardware clock and
you do not set the date, when the system boots it sets the date to the
date of the most recently created file on the boot disk.

If you specify the TO or VER option, followed by a file name, the
output of the DATE command is sent to that file, overwriting any
existing contents.

Adjustments made with DATE only change the software clock and do
not survive powering off the system. To set the battery backed-up
hardware clock from the Shell, you must set the date and use
SETCLOCK SAVE.

Although DATE accepts and displays the date and time in a single
format, programs such as Clock display the date and time according
to your Locale country setting.

Example 1:
1> DATE
6-Sep-92

Example 2:
1> DATE 6-sep-92

sets the date to September 6, 1992. The time is not reset.

Example 3:
1> DATE tomorrow

resets the date to one day ahead.

Example 4:
1> DATE TO Fred

sends the current date to the file Fred.

6-28 AmigaDOS Command Reference

Example 5:
1> DATE 23:00

sets the current time to 11:00 p.m.

Example 6:
1> DATE l-jan-02

sets the date to January 1st, 2002. The earliest date you can set is
January 1, 1978.

DELETE
Deletes files or directories.

Format DELETE {<name|pattem>) [ALL] [QUIET]
[FORCE]

Template FILE/M/A, ALL/S, QUIET/S, FORCE/S

Location C:

DELETE attempts to erase the specified items. You can delete
multiple items at the same time by listing them individually or by
using a wildcard to delete a specific set of files matching a pattern.
The pattern can specify directory levels, as well as names. To abort a
multiple-item DELETE, press Ctrl+C. A multiple-item DELETE
aborts if and when it finds something that cannot be removed; for
example, a file is delete-protected or in use. A pattern matching
DELETE removes everything it can and lists the items that it did not
delete, if any.

Note AmigaDOS does not request confirmation of deletions.
Do not use pattern matching to delete things if you are
not familiar with the procedure; deleted items cannot
be recovered, unless you have an up-to-date backup of
the items deleted.

An error message warns you that you cannot delete directories that
still contain files. Override this using the ALL option. DELETE ALL
deletes the named directory, its subdirectories, and all files.

AmigaDOS Command Reference 6-29

File names are displayed on the screen as they are deleted. To
suppress the screen output, use the QUIET option.

If the d (deletable) protection bit of a file or directory has been
cleared, that item cannot be deleted unless the FORCE option is used.

Example 1:
1> DELETE Old-file

deletes the file named Old-file in the current directory.

Example 2:
1> DELETE Work/Progl Work/Prog2 Work

deletes the files Progl and Prog2 in the Work directory and then
deletes the Work directory if it contains no other files.

Example 3:
1> DELETE T#?/#?(l|2)

deletes all the files that end in 1 or 2 in directories that start with T.

Example 4:
1> DELETE DF1:# ? ALL FORCE

deletes all the files on DF1:, even those set as not deletable.

See also: PROTECT. For more examples using DELETE, see
Chapter 8.

DIR
Displays a sorted list of the files in a directory.

Format DIR [<dir | pattem>] [OPT A \ 11AI | D | F] [ALL]
[DIRS] [FILES] [INTER]

Template DIR,OPT/K,ALL/S,DIRS/S, FILES/S,INTER/S

Location C:

DIR displays the file and directory names contained in the specified
directory or the current directory. Directories are listed first, followed

6-30 AmigaDOS Command Reference

by an alphabetical list of the files in two columns. Pressing Ctrl+C
aborts a directory listing.

The options are:

ALL Displays all subdirectories and their files.
DIRS Displays only directories.
FILES Displays only files.
INTER Enters an interactive listing mode.

The ALL, DIRS, FILES, and INTER keywords supersede the OPT A,
D, F, and I options, respectively. The older keywords are retained for
compatibility with earlier versions of AmigaDOS. Do not use OPT
with the full keywords — ALL, DIRS, FILES, or INTER.

Interactive listing mode stops after each name to display a question
mark at which you can enter commands. The acceptable responses
are shown below:

Press Return
E
B
DEL or DELETE

T
C or COMMAND
Q
?

Displays the next name on the list.
Enters a directory; the files in that directory are displayed.
Goes back one directory level.
Deletes a file or empty directory. DEL does not refer to the
Del key; enter the letters D, E, and L.
Types the contents of a file.
Allows you to enter additional AmigaDOS commands.
Quits interactive editing.
Displays a list of the available interactive-mode
commands.

The COMMAND option allows almost any AmigaDOS command to be
executed during the interactive directory list. To issue a command,
enter C (or COMMAND) at the question mark prompt. DIR asks you
for the command. Enter the desired command, then press Return.
The command is executed and DIR continues. You can also combine
the C and the command on one line by putting the command in
quotation marks following the C.

AmigaDOS Command Reference 6-31

For example,
? C "type prefs.info hex"

is equivalent to pressing Q to exit interactive listing mode and return
to a regular Shell prompt, then entering:

1> TYPE Prefs.info HEX
to display the Prefs.info file on the screen in hexadecimal format.

Formatting a disk from the DIR interactive mode is not recommended
since the format takes place immediately, without any confirmation
requesters appearing. Do not start another interactive DIR from
interactive mode since it results in garbled output.

Example 1:
1> DIR Workbench:

displays a fist of the directories and files on the Workbench disk.

Example 2:
1> DIR MyDisk:#?.memo

displays all the directories and files on MyDisk that end in .memo.

Example 3:
1> DIR Extras: ALL

displays the complete contents of the Extras drawer: all directories,
all subdirectories, and all files, including those in the subdirectories.

Example 4:
1> DIR Workbench: DIRS

displays only the directories on Workbench.

Example 5:
1> DIR Workbench: INTER

begins an interactive list of the contents of the Workbench disk.

For more examples using DIR, see Chapter 8.

6-32 AmigaDOS Command Reference

DISKCHANGE
Informs the Amiga that you have changed a disk in a disk drive.

Format DISKCHANGE <device>

Template DRIVE/A

Location C:

You must use the DISKCHANGE command to inform the system
when you change disks or cartridges in 5.25 inch floppy disk drives or
removable media drives without automatic diskchange hardware.

Example:

If a requester asks you to insert a new disk into your 5.25 inch drive,
known as DF2:, you must insert the disk and then enter:

1> DISKCHANGE DF2:
AmigaDOS then recognizes the new disk and you can proceed.

ECHO
Displays a string.

Format ECHO [<string>] [NOLINE] [FIRST <n>] [LEN <n>]
[TO <filename>]

Template /M,NOLINE/S,FIRST/K/N,LEN/K/N,TO/K

Location Internal

ECHO writes the specified string to the current output window or
device. By default the string is sent to the screen, but if you use the
TO option, you can send the string to any specified device or file.

When the NOLINE option is specified, ECHO does not automatically
move the cursor to the next line after printing the string.

The FIRST and LEN options allow the echoing of a substring. FIRST
<n> indicates the character position from which to begin the echo;
LEN <n> indicates the number of characters of the substring to echo,
beginning with the FIRST character. If the FIRST option is omitted
and only the LEN keyword is given, the substring printed consists of

AmigaDOS Command Reference 6-33

the rightmost <n> characters of the main string. For example, if your
string is 20 characters long and you specify LEN 4, the 17th, 18th,
19th, and 20th characters of the string are echoed.

Examples:
1> ECHO "hello out there!"
hello out there!
1> ECHO "hello out there!" NOLINE FIRST 0 LEN 5
hellol>

For further examples using the ECHO command, see Chapter 8.

ED
Edits text files (a screen editor).

Format ED [FROM] <filename> [SIZE <n>] [WITH
<filename>] [WINDOW <window specification:*]
[TABS <n>] [WIDTH | COLS <n>] [HEIGHT | ROWS
<n>]

Template FROM/A, SIZE/N,WITH/K,WINDOW/K,
TABS/N,WIDTH=COLS/N,HEIGHT=ROWS/N

Location C:

For more information on ED, see Chapter 4. See Chapter 8 for an
example using ED.

6-34 AmigaDOS Command Reference

EDIT
Edits text files by processing the source file sequentially (a line
editor).

Format EDIT [FROM] <filename> [[TO] <filename>] [WITH
<filename>] [VER <filename>] [OPT P <lines> | W
<chars> | P<lines>W<chars>] [WIDTH <chars>]
[PREVIOUS <lines>]

Template FROM/A,TO,WITH/K,VER/K,OPT/K,
WIDTH/N.PREVIOUS/N

Location C:

For more information on EDIT, see Chapter 4.

ELSE
Specifies an alternative for an IF statement in a script file.

Format ELSE

Template (none)

Location Internal

ELSE must be used in conjunction with the IF command. ELSE is
used in an IF block of a script to specify an alternative action if the IF
condition is not true. If the IF condition is not true, execution of the
script jumps from the IF line to the line after ELSE; all intervening
commands are skipped. If the IF condition is true, the commands
immediately following the IF statement are executed up to the ELSE.
Then, execution skips to the ENDIF statement that concludes the IF
block.

Example:

Assume a script, called Display, contains the following block:
IF exists picfile

Multiview picfile
ELSE

ECHO "picfile is not in this directory"
ENDIF

AmigaDOS Command Reference 5-35

If picfile can be found in the current directory, the MultiView
program is executed and picfile is displayed on the screen.

If picfile cannot be found in the current directory, the script skips to
the ECHO command. The following message is displayed in the Shell
window:

picfile is not in this directory
See also: IF, ENDIF, EXECUTE

ENDCU
Ends a Shell process.

Format ENDCLI

Template (none)

Location Internal

ENDCLI ends a Shell process.

See also: ENDSHELL

ENDIF
Terminates an IF block in a script file.

Format ENDIF

Template (none)

Location Internal

ENDIF must be used when an IF command is used. ENDIF is used
in scripts at the end of an IF block. If the IF condition is not true or if
the true-condition commands are executed and an ELSE is
encountered, the execution of the script skips to the next ENDIF
command. Every IF statement must be terminated by an ENDIF.

The ENDIF applies to the most recent IF or ELSE command.

See also: IF, ELSE. For examples using the ENDIF command, see
Chapter 8.

6-36 AmigaDOS Command Reference

ENDSHELL
Ends a Shell process.

Format ENDSHELL

Template (none)

Location Internal

ENDSHELL ends a Shell process and closes the Shell window.

The Shell process can also be ended by ENDCLI, by clicking on the
close gadget, or by pressing CTRL+\.

Use ENDSHELL only when the Workbench or another Shell is
running. If you quit the Workbench and you close your only Shell,
you cannot communicate with the Amiga without rebooting.

The Shell window cannot close if any processes that were launched
from the Shell and not detached are still running. Even though the
window stays open, the Shell does not accept new input. You must
terminate those processes before the window closes. For example, if
you opened an editor from the Shell, the Shell window does not close
until you exit the editor.

For examples using the ENDSHELL command, see Chapter 8.

ENDSKIP
Terminates a SKIP block in a script file.

Format ENDSKIP

Template (none)

Location Internal

ENDSKIP is used in scripts to terminate the execution of a SKIP
block. A SKIP block allows you to jump over intervening commands if
a certain condition is met. When an ENDSKIP is encountered,
execution of the script resumes at the line following the ENDSKIP.
The condition flag is set to 5 (WARN).

See also: SKIP

AmigaDOS Command Reference 6-37

EVAL
Evaluates integer or Boolean expressions.

Format EVAL<valuel> {[<operation>] [<value2>]} [TO
<file>] [LFORMAT=<string>]

Template VALUE 1/A,OP, VALUE2/M,TO/K,LFORMAT/K

Location C :

EVAL is used to evaluate and print the answer of an integer
expression. The fractional portion of input values and final results, if
any, is truncated (cut off). If a non-integer is given as an input value,
evaluation stops at the decimal point.

<Valuel> and <value2> can be decimal (the default), hexadecimal, or
octal numbers. Hexadecimal numbers are indicated by either a
leading Ox or #x. Octal numbers are indicated by either a leading 0 or
a leading #. Alphabetical characters are indicated by a leading single
quotation mark (') and are evaluated as their ASCII equivalent.

The LFORMAT keyword specifies the formatting string used to print
the answer. You can use %X (hexadecimal), %0 (octal), %N (decimal),
or %C (character). The %X and %0 options require a number of digits
specification (for example, %X8 gives 8 digits of hex output). When
using the LFORMAT keyword, you can specify to print a new line by
including *N in your string.

The supported operations and their corresponding symbols are shown
in the following table.

addition
subtraction
multiplication
division
modulo
bitwise AND
bitwise OR
bitwise NOT
left shift

/
mod, M, m, or %

&

Ish, L, or I

6-38 AmigaDOS Command Reference

right shift
negation
exclusive OR
bitwise equivalence

xor, X, or x
eqv, E, or e

rsh, R, or r

EVAL can be used in scripts as a counter for loops. In that case, use
the TO option to send the output of EVAL to a file.

Parentheses can be used in the expressions.

Example 1:
1> EVAL 6 4 / 8 + 2
10

Example 2:
1> EVAL 0x5f / 010 LFORMAT="The answer is %X4*N"
The answer is 000B
1 >

This divides hexadecimal 5f (95) by octal 10 (8), yielding 000B, the
integer portion of the decimal answer 11.875. (The 1> prompt
appears immediately after the 000B if *N is not specified in the
LFORMAT string.)

For more examples using the EVAL command, see Chapter 8.

EXECUTE
Executes a script with optional argument substitution.

Format EXECUTE <script> [{<arguments>}]

Template FILE/A

Location C:

EXECUTE is used to run scripts of AmigaDOS commands. The lines
in the script are executed as if they had been entered at a Shell
prompt. If the s protection bit of a file is set and the file is in the
search path, enter only the file name; the EXECUTE command is not
needed.

AmigaDOS Command Reference 6-39

You can use parameter substitution in scripts by including special
keywords in the script. When these keywords are used, you can pass
variables to the script by including the variable in the EXECUTE
command line. Before the script is executed, AmigaDOS checks the
parameter names in the script against any arguments given on the
command line. If any match, AmigaDOS substitutes the values
specified on the command line for the parameter name in the script.
You can also specify default values for AmigaDOS to use if no
variables are given. If you have not specified a variable and there is
no default specified in the script, then the value of the parameter is
empty (no substitution is made).

The allowable keywords for parameter substitution are explained in
Chapter 5. Each keyword command line must be prefaced with a dot
character (.).

See also: IF, SKIP, FAILAT, LAB, ECHO, RUN, QUIT. For
examples using the EXECUTE command, see Chapter 8.

FAILAT
Instructs a command sequence not to fail unless a given error
condition is returned.

Format FAILAT [<n>]

Template RCLIM/N

Location Internal

Commands indicate that they have failed by setting a nonzero return
code. The return code, normally 5, 10, or 20, indicates the severity of
the error. A return code greater than or equal to a certain limit, the
fail limit, terminates a sequence of non-interactive commands
(commands specified after RUN or in a script).

Use the FAILAT command to alter the fail limit RCLIM (Return Code
Limit) from its initial value of 10. If you increase the limit, you
indicate that certain classes of error should not be regarded as fatal
and that execution of subsequent commands can proceed after the
error. The argument must be a positive number. The fail limit is
reset to the initial value of 10 on exit from the command sequence.

If the argument is omitted, the current fail limit is displayed.

6-40 AmigaDOS Command Reference

Example:

Assume a script contains the following lines:
COPY DFO:MyFile to RAM:
ECHO "MyFile being copied."

If MyFile cannot be found, the script is aborted and the following
message appears in the Shell window:

COPY: object not found
COPY failed returncode 20:

However, if you changed the return code limit to higher than 20, the
script continues even if the COPY command fails. For example, if you
changed the script to read:

FAILAT 21
COPY DFO:MyFile to RAM:
ECHO "MyFile being copied."

even if MyFile cannot be found, the script continues. The following
message appears in the Shell window:

COPY: object not found
MyFile being copied.

See also: ECHO, EXECUTE.

FAULT
Prints the messages for the specified error numbers.

Format FAULT {<n>}

Template /N/M

Location Internal

FAULT prints the messages corresponding to the error numbers
supplied. As many error numbers, separated by spaces, as you want
can be specified to print at the same time.

AmigaDOS Command Reference 6-41

Example:

If you receive the error message:
Error when opening DFliTestFile 205

and need more information, enter:
1> FAULT 205
FAULT 205: object not found

This tells you that the error occurred because TestFile could not be
found on DF1:.

A complete list of error messages appears in Appendix A.

FILENOTE
Attaches a comment to a file.

Format FILENOTE [FILE] <file | pattem> [COMMENT
<comment>] [ALL] [QUIET]

Template FILE/A,COMMENT,ALL/S,QUIET/S

Location C:

FILENOTE attaches an optional comment of up to 79 characters to
the specified file or to all files matching the given pattern.

If the <comment> includes spaces, it must be enclosed in double
quotation marks. To include double quotation marks in a filenote,
each literal quotation mark must be immediately preceded by an
asterisk (*) and the entire comment must be enclosed in quotation
marks, regardless of whether the comment contains any spaces.

If the <comment> argument is omitted, any existing filenote is
deleted from the named file.

Creating a comment with FILENOTE is the same as entering a
comment into the Comment gadget of an icon's Information window.
Changes made with FILENOTE are reflected in the Information
window, and vice versa.

Use the LIST command to view comments made with FILENOTE. If
a file has comments, LIST displays them below the file name.

6-42 AmigaDOS Command Reference

When an existing file is copied to (specified as the TO argument of a
COPY command), it is overwritten, but its original comment is
retained. Any comment attached to a FROM file is not copied unless
the CLONE or COM option of COPY is specified.

If the ALL option is given, FILENOTE adds the <comment> to all the
files and subdirectories matching the pattern entered. If the QUIET
option is given, screen output is suppressed.

Example 1:
1> FILENOTE Sonata "allegro non troppo"

attaches the filenote allegro non troppo to the Sonata file.

Example 2:
1> FILENOTE Toccata "*"presto*""

attaches the filenote "presto" to the Toccata file.

GET
Gets the value of a local variable.

Format GET <name>

Template NAME/A

Location Internal

GET is used to retrieve and display the value of a local environment
variable. The value is displayed in the current window.

Local environment variables are only recognized by the Shell in which
they are created or by any Shells created from a NEWSHELL
command executed in the original Shell. If you open an additional
Shell by opening the Shell icon or by using the Execute Command
menu item, previously created local environment variables are not
available.

AmigaDOS Command Reference 6-43

Example:
1> GET editor
Extras:Tools/MEmacs

See also: SET

GETENV
Gets the value of a global variable.

Format GETENV <name>

Template NAME/A

Location Internal

GETENV is used to retrieve and display the value of a global
environment variable. The value is displayed in the current window.
Global variables are stored in ENV: and are recognized by all Shells.

Example:
1> GETENV editor
Extras:Tools/MEmacs

See also: SETENV

ICONX

Note ICONX is used only as a default tool in a project icon
and cannot be used as a Shell command.

Allows execution of a script file of AmigaDOS commands from an
icon.

Format ICONX

Template (none)

Location C:

To use ICONX, create or copy a project icon for the script. Open the
icon's Information window and change the Default Tool of the icon to

6-44 AmigaDOS Command Reference

C:ICONX and select Save to store the changed .info file. The script
can then be executed by double-clicking on the icon.

When the icon is opened, ICONX changes the current directory to the
directory containing the project icon before executing the script. A
console window can be opened on the Workbench screen if the script
produces output.

Several Tool Types can be specified in the script icon. The WINDOW
Tool Type provides an alternate window specification for the
input/output window. By default, the window's specification is:

WINDOW=CON:0/50//80/IconX/AUTO/WAIT/CLOSE
The AUTO option opens a window only if there is output created by
the script. If a window opens, the WAIT option forces it to remain
open after the script terminates until you specifically close it. The
CLOSE option gives the window a close gadget.

The WAIT Tool Type (not to be confused with the WAIT option of the
WINDOW Tool Type) specifies the number of seconds the
input/output window should remain open after the script terminates.
If you use this option the default input/output window cannot be
closed before the WAIT period has expired. There is also a DELAY
Tool Type that works in a very similar way, except that its parameter
is in l/50th of a second, instead of in seconds.

The STACK Tool Type specifies the number of bytes to use for stack
during script execution. If this Tool Type is not provided, the default
4096 bytes is used.

Finally, the USERSHELL Tool Type runs the script file using the
current User Shell instead of the normal ROM Shell. You must
specify USERSHELL=YES. User Shells are third party shells that
you can purchase and install in your system to replace the standard
Amiga Shell environment that comes with the operating system.

Extended selection passes files that have icons to the script. Their
file names appear to the script as keywords. To use this facility, the
.KEY keyword must appear at the start of the script. In this case, the
AmigaDOS EXECUTE command is used to execute the script file.

See also: EXECUTE. For examples using the ICONX command, see
Chapter 8.

AmigaDOS Command Reference 6-45

IF
Evaluates conditional operations in script files.

Format IF [NOT] [WARN | ERROR | FAIL] [<string>
EQ | GT\ GE <string>] [VAL] [EXISTS <filename>]

Template NOT/S,WARN/S,ERROR/S,FAIL/S,EQ/K,GT/K,
GE/K, VAL/S, EXISTS/K

Location Internal

In a script file, IF, when its conditional is true, carries out all the
subsequent commands until an ENDIF or ELSE command is found.
IF must be used in conjunction with ENDIF, however, ELSE is
optional. When the conditional is not true, execution skips directly to
the ENDIF or to an ELSE. The conditions and commands in IF and
ELSE blocks can span more than one line before their corresponding
ENDIFs.

Nested IFs jump to the matching ENDIF.

The additional keywords are as follows:

NOT
WARN
ERROR

FAIL

<a> GT

<a> GE

<a> EQ
VAL
EXISTS <file>

Reverses the interpretation of the result.
True if previous return code is greater than or equal to 5.
True if previous return code is greater than or equal to 10;
only available if FAILAT is set to greater than 10.
True if previous return code is greater than or equal to 20;
only available if FAILAT is set to greater than 20.
True if the test of a is greater than the text of b
(disregarding case). Use NOT GT for less than.
True if the text of a is greater than or equal to the text of b
(disregarding case). Use NOT GE for less than or equal to.
True if the text of a and b is identical (disregarding case).
Specifies a numeric comparison.
True if the file exists.

If more than one of the three condition-flag keywords (WARN,
ERROR, FAIL) are given, the one with the lowest value is used.

You can use local or global variables with IF by prefacing the variable
name with a $ character.

6-46 AmigaDOS Command Reference

Example 1:
IF EXISTS Work/Prog

TYPE Work/Prog HEX
ELSE

ECHO "It's not here"
ENDIF

AmigaDOS displays the file Work/Prog if it exists in the current
directory. Otherwise, AmigaDOS displays the message It1 s not
here and continues after the ENDIF.

Example 2:
IF ERROR

SKIP errlab
ENDIF
ECHO "No error"
LAB errlab

If the previous command produces a return code greater than or equal
to 10, AmigaDOS skips over the ECHO command to the errlab label.

See also: EXECUTE, FAILAT, LAB, QUIT, SKIP. For more
examples using the IF command, see Chapter 8.

INFO
Gives information about mounted devices.

Format INFO [<device>]

Template DEVICE

Location C:

INFO displays a line of information about each mounted storage
device, including floppy disk drive and hard disk partitions. Listed
are the unit name, maximum size of the disk, the used and free space
in blocks, the percentage of the disk that is full, the number of soft
disk errors that have occurred, the status of the disk, and the name of
the disk.

With the <device> argument, INFO provides information on the
specified device or volume only.

AmigaDOS Command Reference 6-47

Example:
1>INF0
Unit Size Used Free Full Errs Status Name
DFO: 879K 1738 20 98% 0 Read Only Workbench
DF1: 879K 418 1140 24% 0 Read/Write Text-6
Volumes available:
Workbench [Mounted]
Text-6 [Mounted]

INSTALL
Writes or inspects a boot block on a formatted floppy disk or PCMCIA
card, specifying whether it should be bootable.

Format INSTALL [DRIVE] <DF0: | DF1: | DF2: | DF3: | CC0:>
[NOBOOT] [CHECK] [FFS]

Template DRIVE/A, NOBOOT/S, CHECK/S, FFS/S

Location C:

INSTALL clears a floppy disk's or PCMCIA memory card's boot block
area and writes a valid boot block onto it. INSTALL does not affect
any files or directories on the disk or card. The necessary files and
directories must still be present on a device to boot from it
successfully.

The NOBOOT option removes the boot block from an AmigaDOS disk
or card, making it not bootable.

The CHECK option checks for valid boot code. It reports whether a
disk or card is bootable and whether standard Commodore-Amiga
boot code is present on the media. This is useful in detecting some
viruses.

The FFS switch is ignored. It remains part of the template to ensure
compatibility with earlier scripts and programs.

Example 1:
1> INSTALL DFO: CHECK
No bootblock installed

indicates that there is a non-bootable floppy in DFO:.

6-48 AmigaDOS Command Reference

Example 2:
1> INSTALL DFO:

makes the disk in drive DFO: a bootable disk.

Example 3:
1> INSTALL DFO: CHECK
Appears to be FFS bootblock

indicates that there is a bootable FFS floppy in DFO:.

JOIN
Concatenates two or more files into a new file.

Format JOIN [FILE] {<file | pattern>} AS \ TO <filename>

Template FILE/M/A, AS=TO/K/A

Location C:

JOIN copies all the listed files, in the order given, to one new file.
This destination file cannot have the same name as any of the source
files. You must supply a destination file name. The original files
remain unchanged. Any number of files can be JOINed in one
operation.

TO can be used as a synonym for AS.

Example:
1> JOIN Parti Part2 Part3 AS Textfile

For another example using JOIN, see Chapter 8.

LAB
Specifies a label in a script file.

Format LAB [<string>]

Template (none)

Location Internal

AmigaDOS Command Reference 6-49

LAB is used in scripts to define a label that is searched for by the
SKIP command. The label <string> can be of any length, but must be
alphanumeric. No symbols are allowed. If the <string> contains
spaces, it must be enclosed in quotation marks.

See also: SKIP, IF, EXECUTE. For more examples using LAB, see
Chapter 8.

LIST
Lists specified information about directories and files.

Format LIST [{<dir | pattern | filename>}] [P \ PAT <pattem>]
[KEYS! [DATES] [NODATES] [TO <name>] [SUB
<string>] [SINCE <date>] [UPTO <date>] [QUICK]
[BLOCK] [NOHEAD] [FILES] [DIRS] [LFORMAT
<string>] [ALL]

Template DIR/M,P=PAT/K,KEYS/S,DATES/S,NODATES/S,
TO/K,SUB/K,SINCE/K,UPTO/K,QUICK/S,
BLOCK/S,NOHEAD/S,FILES/S,DIRS/S,
LFORMAT/K, ALL/S

Location C:

LIST displays information about the contents of the current directory.
If you specify a <dir>, <pattem>, or <filename> argument, LIST
displays information about the specified directory, all directories or
files that match the pattern, or the specified file, respectively. The
PAT argument lets you specify an additional pattern to match.

Unless other options are specified, LIST displays the following:

name The name of the file or directory.
size The size of the file in bytes. If there is nothing in this file,

the field reads "empty". For directories, this entry reads
"Dir".

protection The protection bits that are set for this file are shown as
letters. The clear (unset) bits are shown as hyphens. Most
files show the default protection bits, —-rwed for
readable/writable/executable/deletable. See the PROTECT
command for more on protection bits.

6-50 AmigaDOS Command Reference

date and time The date and time the file was created or last changed.
comment The comment, if any, placed on the file using the

FILENOTE command. It is preceded by a colon (:).

LIST uses the following options to change the way the output is
displayed:

KEYS
DATES

NODATES
TO <name>

SUB <string>
SINCE <date>
UPTO <date>

Displays the block number of each file header or directory.
Displays dates. (For example, DD-MMM-YY is the USA
default).
Does not display date and time information.
Specifies an output file or device for LIST; by default, LIST
outputs to the current window.
Lists only files containing the substring <string>.
Lists only files timestamped on or after the specified date.
Lists only files timestamped on or before the specified date.

QUICK
BLOCK
NOHEAD
FILES
DIRS
LFORMAT
ALL

Lists only the names of files and directories.
Displays file sizes in 512-byte blocks, rather than bytes.
Suppresses printing of the header and summary information.
Lists files only (no directories).
Lists directories only (no files).
Defines a string to specially format LIST output.
Lists the contents of all directories and subdirectories.

The LFORMAT option modifies the output of LIST and can be used as
a quick method of generating script files. When using LFORMAT,
specify an output format string; this string is output for each file or
directory normally listed. It can contain any text you specify, plus the
usual LIST output information. When LFORMAT is specified, the
QUICK and NOHEAD options are automatically selected. To save
the output, you must redirect it to a file by using the > operator or
specifying a TO file. (For examples using the LIST LFORMAT option,
see Chapter 8.)

The available substitution operators are:

%A Prints file attributes (protection bits).
%B Prints size of file in blocks.

AmigaDOS Command Reference 6-51

%c
%D
%E
%K
%L
%M
%N
%P
%S
%T

Prints any comments attached to the file.
Prints the date associated with the file.
Prints just the file extension.
Prints the file key block number.
Prints the length of the file in bytes.
Prints the file name only, omitting any extension.
Prints the name of the file.
Prints the file parent path.
Superseded by %N and %P; still functional.
Prints the time associated with the file.

You can put a length specifier and/or a justification specifier between
the percent sign (%) and the field specifier. To specify left
justification, place a minus sign (-) before the length specifier.
Otherwise, the information displayed is right justified.

The default output of the LIST command uses the following
specification:

%-24 %7L %A %D %T

Example 1:
> LIST Dirs
Prefs Dir --- rwed 27-Jun-93 11:43:59
T Dir --- rwed 16-Jul-93 11:37:43
Trashcan Dir --- rwed 21-Jun-93 17:54:20

Only the directories in the current directory, in this case SYS:, are
listed. (A shortened version of the typical output is shown above.)

Example 2:
1> LIST LI#? TO RAM:Libs.file

LIST searches for any directories or files that start with LI. The
output of LIST is sent to Libs.file in RAM:.

Example 3:
1> LIST DFO:Documents UPTO 09-0ct-90

Only the files or directories in the Documents directory of DFO: that
have not been changed since October 9, 1990 are listed.

6-52 AmigaDOS Command Reference

For further examples using the LIST command, see Chapter 8.

LOADRESOURCE
Preloads resources into memory to avoid excessive disk swaps.

Format LOADRESOURCE {<name>} [LOCK | UNLOCK]

Template NAME/M,LOCK/S,UNLOCK/S

Location C:

LOADRESOURCE reduces the need for excessive disk swaps on
floppy-only systems by preloading the following types of resources
into memory:

Libraries Specify the path name to the library.
Devices Specify the path name to the device; you cannot LOCK

devices into memory.
Fonts Specify the path name to the exact font file to be loaded.
Catalogs Specify a path name as

LOCALE:Catalogs/<language>/Sys/<catalog>.

The (<name>) option specifies the paths of the resources to load. The
LOCK option tells the command to lock resources, such as libraries,
fonts, and catalogs, into memory. This prevents the system from
flushing the resource from RAM if memory is low. Although you can
preload devices into memory using LOADRESOURCE, you cannot
force them to stay in memory using the LOCK option. The UNLOCK
option tells the command to unlock the resource from memory,
allowing it to be flushed from RAM.

Entering LOADRESOURCE with no options lists all the LOCKed
resources in RAM.

Example 1:
LOADRESOURCE LIBS:as1.1ibrary

loads asl.library into memory. The system can flush this library from
RAM the next time it runs low on memory, unless the LOCK option is
included in the command line.

AmigaDOS Command Reference 6-53

Example 2:
LOADRESOURCE FONTS:topaz/II

loads the Topaz 11 font into memory.

Example 3:
LOADRESOURCE LOCALE:Catalogs/English/Sys/
monitors.catalog

is a valid path name.

LOADWB
Starts Workbench.

Format LOADWB [-DEBUG] [DELAY] [CLEANUP]
[NEWPATH]

Template -DEBUG/S,DELAY/S,CLEANUP/S,NEWPATH/S

Location C:

LOADWB starts the Workbench. Normally, this is in the
Startup-sequence file that starts Workbench when booting. If you
close the Workbench, LOADWB can restart it from a Shell.

The -DEBUG option makes a special developer menu, Debug,
available in the Workbench menu bar. If the DELAY option is
specified, LOADWB waits three seconds before executing to allow
disk activity time to stop. The CLEANUP option automatically
performs a cleanup of the initial disk window.

Workbench snapshots the current paths in effect when the LOADWB
command is executed. It uses these paths for each Shell started from
Workbench. NEWPATH allows you to specify a new path that is
snapshot from the current Shell.

Example 1:

If you quit the Workbench and are working through a Shell, enter:
1> LOADWB

to return the Workbench. Entering LOADWB when the Workbench
is already loaded has no effect.

6-54 AmigaDOS Command Reference

Example 2:
1> PATH DF2:bin ADD
1> LOADWB NEWPATH

loads the Workbench. Any Shells started from the icon have the same
path as the Shell used to run the LOADWB NEWPATH command.

LOCK
Sets the write-protect status of a device.

Format LOCK <drive> [ON | OFF] [<passkey>]

Template DRIVE/A,ON/S,OFF/S,PASSKEY

Location C:

LOCK sets or unsets the write-protect status of a device or partition.
The LOCK remains on until the system is rebooted or until the LOCK
is turned off with the LOCK OFF command.

An optional passkey can be specified. If the passkey is used to lock a
hard disk partition, the same passkey must be specified to unlock the
partition. The passkey can be any number of characters long.

Example:
1> LOCK Work: ON SecretCode

The Work partition is locked. You can read the contents of Work with
commands such as DIR, LIST, or MORE, but you cannot alter the
contents of the partition. If you try to edit the contents of a file on
Work, a requester indicates that Work is write-protected. For
example, if you try to create a new directory by entering the
following:

1> MAKEDIR WORK:Test
the following message appears:

Can't create directory Work:Test
Disk is write-protected

AmigaDOS Command Reference 6-55

To unlock the partition, enter:
1> LOCK Work: OFF SecretCode

Locking a device is only good for the duration of the current session.
Resetting or turning off the Amiga cancels the lock.

MAGTAPE
Retensions, rewinds, or skips forward SCSI (Small Computer System
Interface) tapes.

Format MAGTAPE [DEVICE <device name>] [UNIT <n>]
[RET | RETENSION] [REW| REWIND] [SKIP <n>]

Template DEVICE/K,UNIT/N/K,RET=RETENSION/S,
REW=REWIND/S,SKIP/N/K

Location C:

By default, MAGTAPE uses SCSI device unit 4. To change the
default, you must use both the DEVICE and UNIT keywords.

The RET | RETENSION option runs the tape to the end and rewinds
it. The REW | REWIND option rewinds the tape. The SKIP <n>
option skips <n> files on the tape.

MAGTAPE tests to see if the unit is ready before sending the
command. If your tape is not on-line, repeat the command.

Example:
1> MAGTAPE DEVICE second_scsi.device UNIT 0 REW

MAKEDIR
Creates a new directory.

Format MAKEDIR (<name>)

Template NAME/M

Location C:

6-56 AmigaDOS Command Reference

MAKEDIR creates new, empty directories with the names you
specify. The command works within only one directory level at a
time, so any directories on the given paths must already exist. The
command fails if a directory or a file of the same name already exists
in the directory in which you attempt to create a new one.

MAKEDIR does not create a drawer icon for the new directory.

Example 1:
1> MAKEDIR Tests

creates a directory called Tests in the current directory.

Example 2:
1> MAKEDIR DFlrXyz

creates a directory Xyz in the root directory of the disk in DF1:.

Example 3:
1> CD DFO:
1> MAKEDIR Documents Payables Orders

creates three directories on the disk in DFO:: Documents, Payables,
and Orders.

For more examples using MAKEDIR, see Chapter 8.

MAKEUNK
Creates a link between files.

Format MAKELINK [FROM] <file> [TO] <file> [HARD]
[FORCE]

Template FROM/A,TO/A,HARD/S,FORCE/S

Location C:

MAKELINK creates a FROM file, known as a link, that is a pointer to
another file, the TO file, on the disk. When an application or
command calls the FROM file, the TO file is used. By default,
MAKELINK supports hard links: the FROM file and TO file must be
on the same volume.

AmigaDOS Command Reference 6-57

Soft links, which can link across volumes, are not currently
implemented.

Normally, MAKELINK does not support directory links. To create a
directory link, you must use the FORCE option. If MAKELINK
detects that you are creating a circular link, such as a link to a parent
directory, a Link loop not allowed message is issued.

MOUNT
Makes a device connected to the system available.

Format MOUNT (device) [FROM <filename>]

Template DEVICE/M, FROM/K

Location C :

MOUNT reads a device's configuration parameters from a file. It
then uses the parameter information to mount the devices or make
them available to the system. Multiple devices can be mounted with
a single command. The (device) argument specifies the names of the
devices to be mounted.

MOUNT can process either DOSDrivers mount files or a traditional
multiple-entry MountList file, depending on which of the following
three ways the arguments are specified:

1. Given a device name, MOUNT tries to find a mount file of that
name in DEVS:DOSDrivers, then in SYS:Storage/DOSDrivers,
and finally as an entry in DEVS:MountList. This method is best
if you have only one configuration for that device on your system.

2. Given a path, MOUNT looks for a mount file in that location.
Wildcards may be used to mount multiple devices; as in MOUNT
DEVS:DOSDrivers/~(#?.info). Use this method when you
have mount files stored somewhere other than the DOSDrivers
drawers or if you have several mount files to process at once.

3. Given the FROM keyword and a path, MOUNT specifies the
location of a MountList file to process. Use this method if you
have a MountList stored somewhere other than DEVS: or if you
have several MountLists.

6-58 AmigaDOS Command Reference

Note A mount file's icon Tool Types, if any, override
parameters of the same name in the mount file itself.

Example 1:
1> MOUNT PIPE:

This looks for the mount file DEVS:DOSDrivers/PIPE and processes
it if found. If DEVS:DOSDrivers/PIPE does not exist, MOUNT looks
for SYS:Storage/DOSDrivers/PIPE. If this also fails, then MOUNT
looks for a PIPE: entry in DEVS:MountList.

Example 2:
1> MOUNT Work:Devices/PIPE

This looks for a PIPE mount file in Work:Devices.

Example 3:
1> MOUNT PIPE: FROM SYS:Mydevs/MountList

This scans for a PIPE: entry in SYS:Mydevs/MountList.

See Appendix B for further information on MountLists.

NEWCLI
Opens a new Shell window.

Format NEWCLI [<window specification;*] [FROM
<filename>]

Template WINDOW,FROM

Location Internal

NEWCLI starts a new Shell process. It is the same as using the
NEWSHELL command.

AmigaDOS Command Reference 6-59

NEWSHELL
Opens a new Shell window.

Format NEWSHELL [<window specification:^ [FROM
<filename>]

Template WINDOW,FROM

Location Internal

The new Shell window becomes the currently-selected window and
process. The new window has the same current directory, prompt
string, path, local environment variables, and stack size as the one
from which it is invoked. However, each Shell window is
independent, allowing separate input, output, and program execution.

The window can be sized, dragged, zoomed, and depth-adjusted like
most other Amiga windows.

To create a custom window, you can include the <window
specification> argument. Specify the initial dimensions, location, and
title of the window with this <window specification syntax:

CON:x/y/width/height/title/options
where:

x Is the number of pixels from the left edge of the screen to the
left border of the Shell window. Use no value (If) to specify
the minimum possible pixels.

y Is the number of pixels from the top of the screen to the top of
the Shell window. Use no value (//) to specify the minimum
possible pixels.

width Is the width of the Shell window, in pixels. Use no value (II) to
specify the full width of the screen.

height Is the height of the Shell window, in pixels. Use no value (If)

to specify minimum possible height.
title Is the text that appears in the Shell window title bar.

Use slashes to separate the parameters and options. If any spaces
appear in the specification argument, the entire argument must be
enclosed in double quotation marks (").

6-60 AmigaDOS Command Reference

The allowable options are:

AUTO The window automatically appears when the program needs

ALT

input or produces output. With the Shell window, it opens for
input immediately. The window can only be closed with the
ENDSHELL command. Selecting the Shell's close gadget
closes the window, but it re-opens immediately since it is
expecting input.
The window appears in the specified size and position when
the zoom gadget is clicked. The four parameters must be
separated with slashes (for example, ALT30/30/200/200).

BACKDROP The window appears on the backdrop, behind all the
Workbench windows. This Shell window cannot be brought to
the front of the screen; you have to resize the Workbench
windows to see it.

CLOSE The window has all the standard gadgets, including a close
gadget. This is the default for Shell windows, but you must
specify it to get a standard Shell if you use the WINDOW
argument.

INACTIVE
NOBORDER

The window opens, but is not made the active window.
The window opens without any left or bottom window border.
Only the zoom, depth, and sizing gadgets are available.

NOCLOSE The window does not have a close gadget. If you open a
console normally, there is no close gadget. If you open a
console using the AUTO option, there is automatically a close
gadget on the window.

NODEPTH The window has no window depth gadget.
NODRAG The window cannot be dragged. It has zoom, depth and

sizing gadgets, but no close gadget.
NOSIZE The window only has a depth gadget.
SCREEN The window opens on a public screen. The screen must

already exist. You must specify the name of the screen after
the SCREEN keyword.

SIMPLE If you enlarge the window, the text expands to fill the newly
available space, allowing you to see text that had been
scrolled out of the window. This is the default for standard
Shells.

SMART If you enlarge the window, thevtext does not expand to fill the
newly available space. This saves memory.

AmigaDOS Command Reference 6-61

WAIT The window can only be closed by selecting the close gadget
or entering Ctrl+\. If WAIT is the only option, there is no close
gadget.

NEWSHELL uses the default startup file S:Shell-startup, unless a
FROM file name is specified. SiShell-startup is a standard
AmigaDOS script file. For example, you can have several different
Shell-startup files, each having different command aliases. You can
call such customized Shell environments with FROM.

The NEWCLI command has the same effect as NEWSHELL; it
invokes a new Shell process.

Example 1:
1> NEWSHELL

opens a new Shell window with the default window specification.

Example 2:
1> NEWSHELL "CON://640/200/My Shell/CLOSE”

A window starting in the upper left corner of the screen and
measuring 640 pixels wide and 200 pixels high opens. The window is
titled My Shell and it has a close gadget. The entire argument is
enclosed in quotation marks because the title contains a space. If you
add the command to your User-startup file, a Shell window opens
automatically when your Amiga is booted.

Example 3:
1> NEWSHELL FROM S :Programming.startup

opens a new Shell, but instead of executing the Shell-startup file, the
Programming.startup file is executed. You can have aliases and
prompt commands in the Programming.startup file that are used only
when you are programming.

For more examples using NEWSHELL, see Chapter 8.

PATH
Controls the directory list that the Shell searches to find commands.

Format PATH [{<dir>}] [ADD] [SHOW] [RESET] [REMOVE]
[QUIET]

Template PATH/M,AD D/S,SHOW/S,RESET/S,REMOVE/S,
QUIET/S,

Location Internal

PATH lets you see, add to, or change the search path that AmigaDOS
follows when looking for a command or program to execute. When a
directory is in the search path, you do not need to specify the
complete path to any command within that directory. Entering the
name alone makes AmigaDOS look through the directories in the
search path until it finds the file.

Note The search path is only relevant when AmigaDOS is
searching for a command or program to execute. Full
path specifications are always necessary in arguments
for commands such as COPY and DELETE.

Enter the PATH command alone or with the SHOW option to display
directory names in the current search path. Normally, when PATH is
displaying the directory names, a requester appears if a volume that
is part of the search path cannot be found. For example, if you add a
floppy disk to the search path and then remove that disk from the
disk drive, a requester asks you to insert the disk.

If you specify the QUIET option, PATH does not display requesters
for volumes that are not currently mounted. If PATH encounters an
unmounted volume, it displays the message device (or volume)
is not mounted. The names of any directories on that volume
included in the PATH are not displayed.

The ADD option specifies directory names to be added to the current
PATH. You can add any number of directories with one PATH ADD
command (the ADD keyword is optional); names of the directories
must be separated by at least one space. When you issue the PATH
command, AmigaDOS searches for each of the ADDed directories.

AmigaDOS Command Reference 6-63

To replace the existing search path with a new one, use PATH
RESET followed by the names of the new directories. The existing
search path, except for the current directory and C:, is erased and the
new one is substituted.

The REMOVE option eliminates the named directory from the search
path.

Example:
1> PATH EXTRAS:Tools ADD

adds the Tools directory in the Extras drawer to the search path of
the Shell. If the EXTRAS: is not in a disk drive, a requester asks you
to insert it in any drive.

If you remove EXTRAS: from the drive and enter:
1> PATH

a list of directories in the search path is displayed. A requester asks
you to insert EXTRAS:. If you enter:

1> PATH QUIET
the list of directories in the search path is displayed. However, when
the path comes to Extras:Tools, the error message appears in the list.

See also: ASSIGN. For more examples using PATH, see Chapter 8.

PROMPT
Changes the prompt string of the current Shell.

Format PROMPT [<prompt>]

Template PROMPT

Location Internal

PROMPT allows you to customize the prompt string, the text printed
by the Shell at the beginning of a command line. The prompt string
can contain any characters, including escape sequences.

This manual shows the prompt string as 1>.

The default prompt string is:

6-64 AmigaDOS Command Reference

"%N.%S> "
which displays the Shell number, a period, the current directory, a
right angle-bracket, and a space. Entering PROMPT without a string
argument resets the prompt to this default.

The substitutions available for the <prompt> string are:

%N Displays the process number for the Shell.
%S Displays the current directory.
%R Displays the return code for the last operation.

A space is not automatically added to the end of the string. If you
want a space between the prompt and typed-in text, place it in the
string, and enclose the string in double quotation marks.

You can embed commands in the prompt string by enclosing the
command in back apostrophes C).

Example 1:
1> PROMPT %N
1

Only the Shell number is shown. The > is removed from the prompt.

Example 2:
1> PROMPT "%N.%S.%R> "
1.Work:Anim.0>

The Shell number, current directory, and return code of the previous
command are shown. A space is included after the >.

For more examples using the PROMPT command, see Chapter 8.

PROTECT
Changes the protection bits of a file or directory.

Format PROTECT [FILE] cfile | pattern> [FLAGS] [+1 -]
[<flags>] [ADD | SUB] [ALL] [QUIET]

Template FILE/A,FLAGS,ADD/S,SUB/S,ALL/S,QUIET/S

Location C:

AmigaDOS Command Reference 6-65

All files and directories have a series of protection bits (attributes)
stored with them that control their properties. These bits can be
altered to indicate the type of file and the operations permitted.
PROTECT is used to set or clear the protection bits. For directories,
only the d bit is significant.

The protection bits are represented by letters:

s The file is a script.
p The file is a pure command and can be made resident,
a The file has been archived,
r The file can be read,
w The file can be written to (altered),
e The file is executable (a program).
d The file or directory can be deleted. (Files within a

delete-protected directory can still be deleted.)

Use the LIST command to see the protection bits associated with a
file. The protection field is displayed with set (on) bits shown by their
letters and clear (of!) bits shown by hyphens. For example, a file that
is readable, writable, and deletable has rw-d in the protection field.

To specify the entire protection field at the same time, enter the
letters of the bits you want set as the FLAGS argument without any
other keywords. The named bits are set and all the others are
cleared.

The symbols + and - (or the equivalent keywords ADD and SUB) are
used to control specific bits without affecting the state of unspecified
bits. Follow + or - with the letters of the bits to set or clear,
respectively, and only those bits are changed. There is no space after
the symbol or between the letters. The order of the letters does not
matter. ADD and SUB work similarly, but there must be a space
between the keyword and the letters. You cannot both set and clear
bits in the same command.

The ALL option adds or removes the specified protection bits from all
the files and subdirectories matching the pattern entered. The
QUIET option suppresses the screen output.

6-66 AmigaDOS Command Reference

Example 1:
1> PROTECT DF0:Memo +rw

sets only the protection bits r (readable) and w (writable) of the file
Memo on DFO:. No other protection bits are changed.

Example 2:
1> PROTECT L:#? e SUB

clears the e (executable) protection bit from all the files in the L:
directory.

Example 3:
1> PROTECT Work:Paint rwed

The protection status of Paint becomes —rwed".

QUIT
Exits from a script file with a specified return code.

Format QUIT [<return code>]

Template RC/N

Location Internal

QUIT stops the execution of the script at the specified return code.
The default return code is zero. We recommend you use the standard
return code values of 5, 10, and 20.

AmigaDOS Command Reference 6-67

Example:
ASK "Do you want to stop now?"
IF WARN

QUIT 5
END IF
ECHO "OK"
ECHO "The script is continuing."

If you press Y at the prompt, the script is aborted, since WARN is
equal to a return code of 5. If you press N or press Return:

OK
The script is continuing,

is displayed in the Shell window.

RELABEL
Changes the volume name of the disk in the given drive to the
specified name.

Format RELABEL [DRIVE] <drive> [NAME] <name>

Template DRIVE/A, NAME/A

Location C:

Volume names are set when disks are initially formatted. RELABEL
allows you to change a disk's volume name to any name specified.

On floppy-only systems with one drive, be sure to specify the disks by
volume name instead of drive name.

Examples:
1> RELABEL Workbench: MyDisk

changes the name of the Workbench disk to MyDisk. No colon is
necessary after the second name.

1> RELABEL DF2: DataDisk
changes the name of the disk in DF2: to DataDisk.

6-68 AmigaDOS Command Reference

REMRAD
Removes the recoverable RAM disk.

Format REMRAD [<device>] [FORCE]

Template DEVICE, FORCE/S

Location C:

REMRAD allows you to remove the recoverable RAM disk (usually
mounted as RAD:) from memory without powering off the system. If
you have mounted more than one recoverable RAM disk, use the
DEVICE specification.

REMRAD instructs RAD: to delete all of its files and become inactive.
However, the RAD: RAM_0 disk icon does not disappear. The next
time the Amiga is rebooted, RAD: is removed from memory
completely and the icon is no longer displayed.

If the device is in use when the REMRAD command is given, the
operation aborts with a device in use message. To remove it if it is in
use, you must use the FORCE option.

RENAME
Changes the name of or moves a file or directory.

Format RENAME [FROM] [<name>] [TO|AS] <name>

Template FROM/A/M,TO=AS/A,QUIET/S

Location C:

RENAME renames the FROM file or directory with the specified TO
name. The FROM and TO files or directories must be on the same
volume. If the name refers to a directory, RENAME changes the
directory name without changing the names of the files or
subdirectories in that directory. When there are multiple items in the
FROM argument, the TO argument must be a directory.

If you rename a directory or if you use RENAME to give a file another
directory name, AmigaDOS changes the position of that directory or
file in the filing system hierarchy. This effectively moves the items.

AmigaDOS Command Reference 6-69

Example 1:
1> RENAME Work/Exl AS :Test/Ex2

renames the file Exl as Ex2 and moves it from the Work directory to
the Test directory. The Test directory must exist in the root directory
for this command to work.

Example 2:
1> RENAME 3.doc 5.doc a .doc TO Docs

moves the 3.doc, 5.doc, and a.doc files to the Docs directory. The Docs
directory must already exist.

REQUESTCHOICE
Allows AmigaDOS and ARexx scripts to use custom requesters.

Format REQUESTCHOICE <title> <body> {<gadgets>}
[PUBSCREEN <public screen name>]

Template TITLE/A,BODY/A,GADGETS/A/M, PUBSCREEN/K

Location C:

The <title> argument specifies the title of the requester.

The <body> argument specifies the text of the requester. Linefeeds
can be embedded using *N.

The <gadgets> argument specifies the text for the different gadgets.
The gadget labels are separated with spaces.

The number of the selected gadget is printed as a result to the
console. For evaluation in a script file, you can redirect this output
into an environment variable. If the requester cannot be opened, the
command generates a return code of 20.

The PUBSCREEN argument allows the requester to open its window
on a public screen.

Example:
1> RequestChoice >ENV:rcnum "New Title" "This is my

requester*nSelect a gadget" "OK" "Maybe"
"Cancel"

6-70 AmigaDOS Command Reference

Figure 6-1. Sample RequestChoice Requester

ENVircnum contains 0, 1, or 2 after a gadget is selected. The script
can use this value to control its later execution.

REQUESTFILE
Allows AmigaDOS and ARexx scripts to use a file requester.

Format REQUESTFILE [DRAWER <drawer name>] [FILE
<file>] [PATTERN <pattern>] [TITLE <title>]
[POSITIVE <text>] [NEGATIVE <text>]
[ACCEPTPATTERN <pattem>]
[REJECTPATTERN <pattem>] [SAVEMODE]
[MULTISELECT] [DRAWERSONLY] [NOICONS]
[PUBSCREEN <public screen name>]

Template DRAWER,FILE/K,PATTERN/K,TITLE/K,
POSITrVE/K,NEGATrVE/K,
ACCEPTPATTERN/K,REJECTPATTERN/K,
SAVEMODE/S, MULTISELECT/S,
DRAWERSONLY/S,NOICONS/S,PUBSCREEN/K

Location C:

When entered with no arguments, a file requester with OK, Volumes,
Parent, and Cancel buttons is created. Its Drawer and File gadgets
are empty and it displays the contents of the current directory.

The DRAWER argument specifies the initial contents of the Drawer
gadget.

The FILE option specifies the initial contents of the File gadget.

The PATTERN option allows the use of a standard AmigaDOS
pattern. It includes a Pattern gadget in the requester and specifies

AmigaDOS Command Reference 6-71

the initial contents of the gadget. If this option is not provided, the
file requester does not have any Pattern gadget.

The TITLE option specifies the title of the requester.

The POSITIVE option specifies the text to appear in the positive (left)
choice in the file requester.

The NEGATIVE option specifies the text to appear in the negative
(right) choice in the file requester.

The ACCEPTPATTERN option specifies a standard AmigaDOS
pattern. Only files matching this pattern are displayed in the file
requester.

The REJECTPATTERN option specifies a standard AmigaDOS
pattern. Files matching this pattern are not displayed in the file
requester.

If SAVEMODE is specified, the requester is used for writing files to
disk. If MULTISELECT is specified, the requester allows multiple
files to be selected at once. If DRAWERSONLY is specified, the
requester does not have a File gadget. This effectively turns the file
requester into a directory requester. If NOICONS is specified, the
requester does not display icons (.info files).

The selected files are returned on the command line, enclosed in
double quotation marks and separated with spaces. The command
generates a return code of 0 if you select a file or 5 if you cancel the
requester.

The PUBSCREEN argument allows the requester to open its window
on a public screen.

Example:
1> REQUESTFILE DRAWER Devs: TITLE "My Req" NOICONS

6-72 AmigaDOS Command Reference

o !mm ma
clipboard,device

device
parallel,dev ice
postscript Jnit.ps
printer,device
seriahdevtce
sytt ̂ configuration

$,944 88/ 1
$,$84 08/ I 4,272 98/ 1
5,814 88/ I

27,428 88/ |
5,412 88/

232 88/
A
V

Draper [Devs!
FUt IT "

Ok | Volumes 1 Parent | Cancel j
V ,\ MI £

Figure 6-2. Sample RequestFile Requester

RESIDENT
Displays and modifies the list of resident commands.

Format RESIDENT [cresident name>] [<filename>]
[REMOVE] [ADD] [REPLACE] [PURE | FORCE]
[SYSTEM]

Template NAME,FILE,REMOVE/S,ADD/S,
REPLACE/S,PURE=FORCE/S,SYSTEM/S

Location Internal

RESIDENT loads a command into memory and adds it to the resident
list maintained by the Shell. This allows the command to be executed
without reloading it from disk each time. If RESIDENT is invoked
with no options it lists the programs on the resident list.

To be made resident, a command should be pure, meaning that it is
both re-entrant and re-executable. A re-entrant command can
properly support independent use by two or more programs at the
same time. A re-executable command does not have to be reloaded to
be executed again. Commands that have these characteristics are
called pure and have the p (pure) protection bit set.

The following commands cannot be made resident: BINDDRIVERS,
CONCLIP, IPREFS, LOADRESOURCE, LOADWB, and SETPATCH.

AmigaDOS Command Reference 6-73

LIST the C: directory to check for the presence of the p protection bit
to determine which commands are pure.

Many of the commands in the C: directory, as well as the MORE
command in Utilities, are pure commands and can be made resident.
If a command does not have its pure bit set, it probably cannot be
made resident safely. (Setting the pure bit does not make a command
or program pure).

The REPLACE option is the default option and does not need to be
explicitly stated. If no cresident name> is specified (for example, only
a file name is specified), RESIDENT uses the file name portion as the
name on the resident list. The full path to the file must be used.

If a cresident name> is specified and RESIDENT finds a program
with that name already on the list, it attempts to replace the
command. That cresident name> must be used to reference the
resident version of the command. The replacement succeeds only if
the already-resident command is not in use.

To override REPLACEment and make several versions of a command
resident simultaneously, use the ADD option, giving a different
cresident name> for each version loaded.

If the SYSTEM option is specified, the command is added to the
system portion of the resident list and becomes available as a system
component. Any commands added to the resident list with the
SYSTEM option cannot be removed. To list these files on the
RESIDENT list, you must specify the SYSTEM option.

The PURE option forces RESIDENT to load commands that are not
marked as pure and use them to test the pureness of other commands
and programs. Use the PURE option with caution. Be sure the
programs that you make RESIDENT meet the criteria to be resident
or be careful to use the command in only one process at a time.

The availability of internal commands can also be controlled with
RESIDENT. To deactivate an Internal command (for example, if an
application has its own command of the same name), use RESIDENT
ccommand> REMOVE. The command can be reactivated with the
REPLACE option.

Example 1:
1> RESIDENT C:COPY

6-74 AmigaDOS Command Reference

makes the COPY command resident (replaces any previous version).

Example 2:
1> RESIDENT Copy2 DF1:C/COPY ADD

adds another version of COPY to the resident list, under the name
Copy2.

Example 3:
1> RESIDENT Xdir DF1:C/Xdir PURE

makes an experimental, non-pure version of the DIR command
resident.

Example 4:
1> RESIDENT CD REMOVE

makes the Internal CD command unavailable.

Example 5:
1> RESIDENT CD REPLACE

restores the CD command to the system.

See also: PROTECT, LIST.

RUN
Executes commands as background processes.

Format RUN <command...> [{+ <command>}]

Template COMMAND/F

Location Internal

RUN is used to start background processes. A background process
does not open its own window for input or output and does not take
over the parent Shell.

RUN attempts to execute the <command> and any arguments
entered on the command line. You can RUN multiple command lines
by separating them with plus signs (+). If you press Return after a

AmigaDOS Command Reference 6-75

plus sign, RUN interprets the next line as a continuation of the same
command line.

To make it possible to close the Shell window in which the process
was started, redirect the output of RUN with RUN >NIL:
<command>.
A new background Shell has the same search path and command
stack size as the Shell from which RUN is given.

You can RUN commands stored on the resident list. Resident
commands are checked before commands in the command path. A
Shell started with RUN NEWSHELL uses the default startup file,
S:Shell-startup.

Example 1:
1> RUN COPY Text TO PRT:+
DELETE Text +
ECHO "Printing finished"

prints the Text file by copying it to the printer device, deletes it, then
displays the given message. Plus signs string together the command
lines, causing each command to be run after the previous command
finishes.

Example 2:
1> RUN EXECUTE Cornseq

executes, in the background, all the commands in the script file
Comseq.

For more examples using the RUN command, see Chapter 8.

6-76 AmigaDOS Command Reference

SEARCH
Looks for the specified text string in the files of the specified
directories.

Format SEARCH [FROM] {cname | pattern>} [SEARCH]
<string | pattem> [ALL] [NONUM] [QUIET]
[QUICK] [FILE] [PATTERN]

Template FROM/M,SEARCH/A,AJLL/S,NONUM/S,
QUIET/S,QUICK/S,FILE/S,PATTERN/S

Location C:

SEARCH looks through all the files in the FROM directory for the
string given in the SEARCH string. (The FROM and SEARCH
keywords are optional.) If the ALL switch is given, SEARCH also
looks through all the subdirectories of the FROM directory. SEARCH
displays the name of the file being searched and any line that
contains the text sought. You must place quotation marks around
any search text containing a space. The search is not case-sensitive.

The options are:

NONUM
QUIET

QUICK
FILE

PATTERN

Line numbers are not printed with the strings.
Searches quietly; file names being searched are not
displayed.
Uses a more compact output format.
Looks for a file by the specified name, rather than for a string
in the file.
Uses pattern matching to search for the string.

SEARCH leaves a 0 in the condition flag if the object is found, and a 5
(WARN) otherwise. To abandon the search of the current file and
continue to the next file, if any, press Ctrl+D. SEARCH is aborted
when Ctrl+C is pressed.

Examples
1> SEARCH DEVS: DOSDrivers globvec

DOSDrivers (dir)
PIPE..

6 GlobVec
PIPE.info

= -l

AmigaDOS Command Reference 6-77

1> SEARCH Utilities #?.info FILE
Workbench:Utilities/Clock.info
Workbench:Utilities/MultiView.info

SET
Sets a local variable.

Format SET [<name>] [<string...>]

Template NAME ,STRING/F

Location Internal

SET with no arguments lists the current local variables.

SET with <name> and <string> arguments creates a new
environment variable. The first word after SET is taken as the
<name>. Everything else on the command line is taken as the
<string> argument. Quotation marks are not required.

An environment variable created with SET is local to the Shell in
which it was created. If you create a new Shell with the NEWSHELL
command, that Shell also recognizes any variables created in its
parent Shell. However, if you create a new Shell with the Execute
Command Workbench menu item or by opening the Shell icon,
variables created with SET are not recognized in the new Shells.

You can call environment variables in a script or on a command line
by placing a dollar sign ($) in front of the variable name.

To remove a local variable definition, use the UNSET command.

Examples:
1> SET Origin This process launched from icon

creates the local variable Origin that stores a reminder that a Shell
was invoked from an icon rather than a NEWSHELL.

1> ECHO $Origin
This process launched from icon

See also: GET, UNSET

6-78 AmigaDOS Command Reference

SETCLOCK
Sets or reads the battery backed-up hardware clock.

Format SETCLOCK LOAD | SAVE | RESET

Template LOAD/S, SAVE/S, RESET/S

Location C:

SETCLOCK SAVE sets the date and time of the battery backed-up
hardware clock (if your system has one) from the current system time,
which is set with the Time editor or with the DATE command.
SETCLOCK SAVE is typically used after a DATE command.

SETCLOCK LOAD sets the current system time from the battery
backed-up clock. In systems using AmigaDOS Release 2 or later, this
is done automatically during the boot process.

The RESET option resets the clock completely. Use this option if the
clock is accidentally turned off or LOAD and SAVE do not appear to
work correctly.

Example:
1> DATE 22-JAN-93 07:15:25
1> SETCLOCK SAVE

saves the date, January 22, 1993, and the time, 7:15 a.m., to the
battery backed-up hardware clock. When the system is booted, the
system clock is set with the time saved in the hardware clock.

Some Amiga models do not have battery backed-up clocks unless an
expansion unit has been installed.

See also: DATE

AmigaDOS Command Reference 6-79

SETDATE
Change the timestamp of a file or directory.

Format SETDATE <file | pattem> [<weekday>] [<date>]
[<time>] [ALL]

Template FILE/A,WEEKDAY,DATE,TIME,ALL/S

Location C:

SETDATE changes the timestamp, the date and time of the creation
or last change, of a file or directory. SETDATE <file> changes the
date/time of the file to the current system date/time. SETDATE ALL
changes the date and time of all the files and subdirectories matching
the pattern entered.

The system clocks are not affected by SETDATE.

You can use output from the DATE command as input to SETDATE.

Example 1:
1> SETDATE TestFile

changes the date and time associated with TestFile to the current
date and time.

Example 2:
1> SETDATE TestFile 01-04-91 13:45:32

Changes the date and time associated with TestFile to April 1, 1991,
1:45 p.m.

See also: DATE

SETENV
Sets a global variable.

Format SETENV [<name>] [<string...>]

Template NAME.STRING/F

Location Internal

6-80 AmigaDOS Command Reference

SETENV with no arguments lists the current global variables.

SETENV with <name> and <string> arguments creates a new global
environment variable. The first word after SETENV is taken as the
<name>. Everything else on the command line is taken as the
<string> argument. Quotation marks are not required.

Global variables are stored in the ENV: directory and are available to
all processes. However, if a local variable (defined by SET) and a
global variable share the same name, the local variable is used.

Environment variables are called by scripts or other commands by
including a dollar sign ($) in front of the variable name.

To remove a global variable definition, use the UNSETENV
command.

Example 1:
1> SETENV Editor Extras:Tools/MEmacs

creates the environment variable Editor that can be used with the
MORE utility. This specifies the editor as MEmacs, located in the
Tools drawer of EXTRAS:. The variable Editor is available in any
Shell.

Example 2:
1> SETENV Editor C :ED

same as above, only the editor specified is ED.
1> ECHO $Editor
C : ED

See also: GETENV, UNSETENV

SETFONT
Changes the font of the current Shell.

Format SETFONT <size> [SCALE] [PROP] [ITALIC]
[BOLD] [UNDERLINE]

Template NAME/A.SIZE/N/A,SCALE/S,PROP/S,
ITALIC/S, BOLD/S, UNDERLINE/S

AmigaDOS Command Reference 6-81

Location C :

SETFONT lets you change the font used in a particular Shell window,
overriding the System Default Text setting specified in the Font
editor. SETFONT is only effective in the window in which it is
invoked.

You must specify both a font name and a size when using the
SETFONT command. The other options are:

SCALE Enables bitmap font scaling.
PROP Allows proportional fonts.
ITALIC The font is italic.
BOLD The font is boldface.
UNDERLINE The font is underlined.

Invoking SETFONT clears the Shell window of its current contents
and displays a new prompt, in the new font, at the top of the window.
Using proportional fonts in a Shell window is not recommended
because the variable character spacing prevents columns of
information from lining up and makes editing the command line
difficult.

Example:
1> SETFONT topaz 11 BOLD UNDERLINE

The Shell window clears and the new prompt is in 11 point Topaz,
underlined and boldface.

SETKEYBOARD
Sets the keymap for the Shell.

Format SETKEYBOARD <keymap name>

Template KEYMAP/A

Location C :

SETKEYBOARD specifies the keymap used by the current Shell. The
available files are listed below:

6-82 AmigaDOS Command Reference

Keymap Keyboard

cdn Canadien Frangais
ch1 Suisse
ch2 Schweiz
d Deutsch
dk Dansk
e Espanol
f Frangais

gb British

i Italiana
n Norsk
po Portugues
s Svenskt
usa American
usa2 Dvorak

To specify the same permanent keymap, use the Preferences Input
editor to save your choice.

Example:

To change to a French Canadian keymap, enter:
1> SETKEYBOARD cdn

The keymap file must be in the KEYMAPS: directory for
SETKEYBOARD to find it.

SKIP
Skips to a label when executing script files.

Format SKIP [<label>] [BACK]

Template LABEL,BACK/S

Location Internal

AmigaDOS Command Reference 6-83

SKIP is used in scripts to allow you to skip ahead in the script to a
<label> defined by a LAB statement. If no <label> is specified, SKIP
jumps to the next LAB statement.

SKIP always searches forward from the current line of the file.
However, when the BACK option is used, SKIP starts searching for
the label from the beginning of the file. This allows SKIPs to points
prior to the SKIP command.

You can only SKIP as far back as the last EXECUTE statement. If
there are no EXECUTE statements in a script, you SKIP back to the
beginning of the file.

If SKIP does not find the label specified, the command sequence
terminates and the message Label <label> not £ound by Skip
is displayed.

Example:

Assume you have the following script, called CheckFile:
.KEY name
IF exists <name>

SKIP message
ELSE

ECHO "<name> is not in this directory."
QUIT

END IF
LAB message
ECHO "The <name> file exists."

You can run the script by entering:
1> EXECUTE CheckFile Document

If the Document file exists in the current directory, the execution of
the script SKIPs ahead to the LAB command. The message:

The Document file exists.
is displayed in the Shell window.

If the Document file is not in the current directory, the execution of
the script jumps to the line after the ELSE statement, displaying the
message:

Document is not in this directory.

6-84 AmigaDOS Command Reference

See also: EXECUTE, LAB. For more examples using the SKIP
command, see Chapter 8.

SORT
Alphabetically sorts the lines of a file.

Format SORT [FROM] <file | pattem> [TO] <filename>
[COLSTART <n>] [CASE] [NUMERIC]

Template FROM/A,TO/A,COLSTART/K,CASE/S,NUMERIC/S

Location C:

SORT sorts the FROM file alphabetically, line-by-line, sending the
sorted results to the TO file. SORT assumes the file is a normal text
file in which lines are separated by line feeds. SORT normally
disregards case. If the CASE switch is given, upper-cased items are
output first.

The COLSTART keyword specifies the character column at which the
comparison begins. SORT starts comparing the fines from that point,
wrapping around to the beginning of the fine if the compared lines
match to the end.

When the NUMERIC option is specified, the fines are interpreted as
numbers from the first column reading to the right, stopping at the
first non-numeric character. Lines not beginning with numbers are
treated as 0. The fines are output in numerical order. CASE is
ignored when NUMERIC is specified.

Example:
1> SORT DF0:Glossary TO DFO:Glossary.alpha

sorts the lines in the Glossary file, arranges them alphabetically, and
outputs them to a new file called Glossary.alpha. The case of the
words is disregarded.

For more examples using the SORT command, see Chapter 8.

AmigaDOS Command Reference 6-85

STACK
Displays or sets the stack size within the current Shell.

Format STACK [[SIZE] <stack size>]

Template SIZE/N

Location Internal

A Shell uses a certain amount of stack, a special area in memory
allocated for it. Each Shell has a specific stack size. If a program
causes a system failure, changing the Shell's stack size may solve the
problem. Commands performing operations consisting of multiple
levels can require additional stack space.

Stack sizes typically range from 4096 to 40000 bytes. If the stack size
is too small, a system failure can occur. If the stack size is too large,
it cam use too much memory.

Note A software failure message is displayed if you run out
of stack space. Increase the stack size for the Shell that
caused the error.

Entering the STACK command with no arguments displays the
current stack size.

STATUS
Lists information about Shell processes.

Format STATUS [<process>] [FULL] [TCB] [CLI | ALL]
[COM | COMMAND <command>]

Template PROCESS/N,FULL/S,TCB/S,CLI=ALL/S,
COM=COMMAND/K

Location C:

STATUS without any arguments lists the numbers of the current
Shell processes and the program or command running in each. The
<process> argument specifies a process number, limiting STATUS to
giving information about that process only.

6-86 AmigaDOS Command Reference

For information on the stack size, global vector size, priority, and the
current command for each process, use the FULL keyword. The TCB
keyword is similar, omitting the command information. The
CLI=ALL keyword gives only the command information.

STATUS searches for a command when you use the COMMAND
option. STATUS scans the Shell list, looking for the specified
<command>. If the command is found, the Shell's process number is
output, and the condition flag is set to 0. Otherwise, the flag is set to
5 (WARN).

Example 1:
1> STATUS 1
Process 1: Loaded as command: status

Example 2:
1> STATUS 1 FULL
Process 1: stk 4000, gv 150, pri 0 Loaded as
command: status

Example 3:
1> STATUS >RAM:Xyz COMMAND=COPY
1> BREAK <RAM:Xyz >NIL: ?

sends a break to the process executing COPY.

TYPE
Displays the contents of a file.

Format TYPE {<file | pattem>) [TO <name>] [OPT H | N]
[HEX | NUMBER]

Template FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S

Location C:

TYPE outputs the contents of the named file to the current window if
no destination is given or to a specified output file. The TO keyword
types information to a specified file. If more than one file name is
specified, the file names are typed in sequence.

AmigaDOS Command Reference 6-87

The OPT H and OPT N options are also available by the HEX and
NUMBER keywords, respectively. However, the two options are
mutually exclusive. The HEX option types the file as columns of
hexadecimal numbers, with an ASCII character interpretation
column. The NUMBER option numbers the lines as they are output.

To pause output, press the Space bar. To resume output, press
Backspace, Return, or Ctrl+X. To stop output, press Ctrl+C
(♦★★Break is displayed).

Example:
1> TYPE S :Startup-sequence

The contents of the Startup-sequence file in the S: directory are
displayed on the screen.

For more examples using TYPE, see Chapter 8.

UNALIAS
Removes an alias.

Format UNALIAS [<name>]

Template NAME

Location Internal

UNALIAS removes the named alias from the alias list. With no
arguments, UNALIAS lists the current aliases.

See also: ALIAS

UNSET
Removes a local variable.

Format UNSET [<name>]

Template NAME

Location Internal

6-88 AmigaDOS Command Reference

UNSET removes the named local variable from the variable list for
the current process. With no arguments, UNSET lists the current
variables.

See also: SET

UNSETENV
Removes a global variable.

Format UNSETENV [<name>]

Template NAME

Location Internal

UNSETENV removes the named global variable from the current
variable list. With no arguments, UNSETENV lists the current
variables.

See also: SETENV

VERSION
Finds software version and revision numbers.

Format VERSION [clibrary | device | file>] [eversion #>]
[crevision #>] [cunit #>] [FILE] [INTERNAL] [RES]
[FULL]

Template NAME,VERSION/N,REVISION/N,UNIT/N,
FILE/S,INTERNAL/S,RES/S,FULL/S

Location C :

VERSION finds the version and revision number of a library, device,
command, or Workbench disk. VERSION can also test for a specific
version/revision and set the condition flags if the version/revision is
greater.

VERSION with no clibrary | device | file> argument prints the
Kickstart version number and the Workbench version number and
sets the two corresponding environment variables. If a name is
specified, VERSION attempts to open the library, device, drive, or file

AmigaDOS Command Reference 6-89

and read the version information. Specify a device name, such as
DFO: or DHO:, to get the version of the file system used by a drive.

When a eversion #> or a crevision #> is specified, VERSION sets the
condition flag to 0 if the version and revision number of the Kickstart,
library, or device driver is greater than or equal to the specified
values. Otherwise, the flag is set to 5 (WARN). If a revision number
is not specified, no comparison on the revision number is performed.

The cunit #> option is obsolete and is retained for compatibility with
older programs.

The FILE option forces VERSION to ignore libraries or device drivers
currently loaded. This allows you to get the version number of a
.library or .device file on disk when a library or device of that name is
already in memory or available in LIBS:. The RES option gets the
version of Resident commands. Built-in Shell commands have the
same version string as the Shell. INTERNAL, is also obsolete and
retained for compatibility. The FULL option prints out the complete
version of the string, including the date.

Examples:
1> VERSION
Kickstart 39.92 Workbench 39.1
1> VERSION Alpha:Libs/xyz.library FILE FULL
xyz.library 1.13 (05/24/93)

WAIT
Waits for the specified time.

Format WAIT [<n>] [SEC | SECS | MIN | MINS] [UNTIL
<time>]

Template /N,SEC=SECS/S,MIN=MINS/S,UNTIIVK

Location C:

WAIT is used in command sequences or after RUN to wait for a
certain period of time or until a specific time. The default waiting
period is one second.

6-90 AmigaDOS Command Reference

The <n> argument specifies the number of seconds or minutes to
wait. These options are mutually exclusive; you can only enter
seconds or minutes.

Use the keyword UNTIL to wait until a particular time of the day,
given in the format HH:MM.

Example 1:
1> WAIT 10 MINS

waits ten minutes.

Example 2:
1> WAIT UNTIL 21:15

waits until 9:15 p.m.

WHICH
Searches the command path for a particular item.

Format WHICH <command> [NORES] [RES] [ALL]

Template FILE/A,NORES/S,RES/S,ALL/S

Location C:

WHICH lets you find a specific command, program, or directory by
entering its name. If the named item is in the search path, WHICH
displays the complete path to that item. WHICH lists resident
commands as RESIDENT and internal commands as INTERNAL.

Normally, WHICH searches the resident list, the current directory,
the command paths, and the C: directory. If the item is not found,
WHICH sets the condition flag to 5 (WARN), but does not print any
error message.

If the NORES option is specified, the resident list is not searched. If
the RES option is specified, only the resident list is searched.

The ALL switch continues the search through the full search path,
finding and listing all locations of a command or program. It can,
however, lead to multiple listings of the same command if that

AmigaDOS Command Reference 6-91

command is reached by more than one route (such as C: and the
current directory).

Examples:
1> WHICH avail
C :Avail
1> WHICH C:
Workbench:C
1> WHICH alias
INTERNAL alias

WHY
Prints an error message explaining why the previous command failed.

Format WHY

Template (none)

Location Internal

When a command fails, the screen displays a brief message. This
message typically includes the name of the file, if that was the
problem, but provides no details. If the reason for a failure is not
evident, enter WHY for a more complete explanation.

6-92 AmigaDOS Command Reference

System Commands
System commands are required for normal system operation. They
are used by the standard Startup-sequence or called automatically by
the system for applications. The user does not typically invoke these
commands.

ADDDATATYPES
Builds a list of data types that datatypes.library can understand.

Format ADDDATATYPES [FILES] {filenames} [QUIET]
[REFRESH]

Template FILES/M,QUIET/S,REFRESH/S

Location C :

Data type descriptors are stored in DEVS:DataTypes. These
descriptors allow programs such as MultiView to interpret different
data file types. ADDDATATYPES can also be called by application
installation scripts to add their own data types to the list.

The FILES argument specifies the names of the data type descriptors
to add to the existing list of data type descriptors.

Specifying the QUIET option suppresses error and output messages.

Specifying the REFRESH option scans the DEVS:DataTypes
directory for new or changed data type descriptors.

BINDDRIVERS
Binds device drivers to hardware.

Format BINDDRIVERS

Template (none)

Location C :

BINDDRIVERS loads and runs device drivers for add-on hardware.
These devices are automatically configured by the expansion library if
their device drivers are in the SYS:Expansion directory.

AmigaDOS Command Reference 6-93

The BINDDRIVERS command must appear in the Startup-sequence
file to configure the hardware when the system is booted.

CONCLIP
Moves data between console windows and the Clipboard.

Format CONCLIP [CLIPUNIT | UNIT cunit number>] [OFF]

Template CLIPUNIT=UNIT/N,OFF/S

Location C:

CONCLIP is called from the standard Startup-sequence. It keeps
track of the information that has been cut to the Clipboard.

The CLIPUNIT option allows you to specify the clipboard.device unit
number to use. Specify any unit from 0 to 255. The default number
is 0. We recommend that this option be used only by advanced users
or programmers who wish to use different units for different data,
such as one for text and another for graphics. Run the command from
the Shell, specifying the new unit number. The next time you copy
and paste, that Clipboard unit is used.

Using the OFF option with Shell, MEmacs, and ED causes these
commands to stop interacting with the system Clipboard during
cutting and pasting operations. We recommend that you do not use
this option.

IPREFS
Communicates Preferences information stored in the individual
editor files to the operating system.

Format IPREFS

Template (none)

Location C:

IPREFS reads the individual system Preferences files and passes the
information to the system. IPREFS is generally run in the Startup-
sequence after the Preferences files are copied to ENV:. Each time a
user selects Save or Use from within an editor, IPREFS is notified

6-94 AmigaDOS Command Reference

and passes the information to the system. If necessary, IPREFS
resets Workbench to implement those changes. If any Shell, project,
or tool windows are open, IPREFS displays a requester asking you to
close them.

SETPATCH
Makes ROM patches in system software.

Format SETPATCH [QUIET] [NOCACHE] [REVERSE]

Template QUIET/S,NOCACHE/S,REVERSE/S

Location C:

SETPATCH installs temporary modifications to the operating system.
It must be run at the beginning of the Startup-sequence file. Updated
versions of SETPATCH are made available when necessary as
AmigaDOS development continues.

If QUIET is specified, no output is sent to the screen.

NOCACHE prevents data caching from being activated on some
68030 and 68040 systems.

REVERSE stores patches in reverse order. This option is useful for
CDTV developers only.

Chapter 7

Workbench-Related
Command Reference

The commands described in this chapter are command line
equivalents of running Workbench programs. They are divided into
the following functional categories:

• Preferences editors
• Commodities programs
• Other Workbench related tools and programs

These command groupings have been made for documentation
purposes only.

Note A full description for using all of the Workbench
editors, tools, and programs can be found in the
Workbench User's Guide.

The following table provides a quick alphabetical reference to all of
the commands in this chapter, their purpose, and the pages on which
they appear:

Command Purpose Page

AutoPoint Automatically selects any window the pointer 7-13
is over.

Blanker Causes the monitor screen to go blank if no 7-14
input is received within a specified time.

Calculator Provides an on-screen calculator. 7-18

7-2 Workbench-Related Command Reference

Command
(cont'd)

Purpose
(cont'd)

Page
(cont'd)

ClickToFront Allows you to bring a window to the front of the
screen by use of mouse clicks.

7-15

Clock Provides an on-screen clock. 7-19
CMD Redirects printer output to a file. 7-20
CrossDOS Sets text filter and conversion options for

CrossDOS devices.
7-15

DiskCopy Copies the contents of one disk to another. 7-21
Exchange Monitors and controls the Commodity

Exchange programs.
7-16

FixFonts Updates the .font files in the FONTS: directory. 7-22
FKey Assigns commands to function keys. 7-16
Font Specifies the fonts used by the system. 7-5
Format Formats a disk for use with the Amiga. 7-23
GraphicDump Prints the frontmost screen. 7-25
IconEdit Edits the appearance and type of icons. 7-26
IControl Specifies parameters used by the Workbench. 7-5
InitPrinter Initializes a printer for print options specified in

the Preferences editors.
7-26

Input Specifies different speeds for the mouse and
keyboard and selects a national keyboard.

7-6

Intellifont Manages Intellifont outline fonts. 7-26
KeyShow Displays the current keymap. 7-27
Locale Allows the choice of language for interacting

with the system.
7-6

MEmacs Enables screen-oriented text editing. 7-27
More Displays the contents of an ASCII file. 7-27

MouseBlanker Removes the mouse pointer from the screen
while entering input from the keyboard.

7-17

MultiView Displays picture files, text files, AmigaGuide
files, sound files, and animated graphics files.

7-29

Workbench-Related Command Reference 7-3

Command Purpose Page
(cont'd) (cont'd) (cont'd)

NoCapsLock Disables the Caps Lock key. 7-17
NoFastMem Forces the Amiga to use only Chip RAM. 7-32
Overscan Changes the sizes of the display areas for text

and graphics.
7-7

Palette Changes the colors of the Workbench screen. 7-7
Pointer Changes the appearance of the mouse

pointer.
7-8

PrepCard Prepares PCMCIA memory cards for use as
disk or RAM.

7-32

Printer Specifies a printer and basic print options. 7-8
PrinterGfx Specifies graphic printing options. 7-9
PrinterPS Specifies PostScript printing options. 7-9
ScreenMode Selects a display mode. 7-10

Serial Sets the specifications for communication
through the serial port.

7-10

Sound Controls the type of sound used for the display
beep.

7-11

Time Sets the system clock. 7-11
WBPattern Creates background patterns for the

Workbench and windows.
7-12

7-4 Workbench-Related Command Reference

Preferences Editors
The commands listed in this section invoke the Workbench
Preferences editors.

The same arguments and switches appear within many of the
Preferences Editors command format statements. These have the
same meaning for each command that uses them and are described as
follows:

Argument Meaning

[FROM
<filename>]

Specifies a Preferences preset file to open. This file
must be previously saved with the given editor's Save
As menu item. These files normally have the .pre
extension and are stored in the Presets drawer.

[EDIT] Opens the editor. This is the default if you enter the
editor name alone.

[USE] Uses the settings in the FROM file without opening the
editor.

[SAVE] Saves the settings in the FROM file as the default
without opening the editor.

[PUBSCREEN
<public screen
name>]
[UNIT]

Allows the editor to open its window on a public screen.

Causes an additional text gadget to appear in the editor
for setting the default unit number.

[CLIPUNIT
clipboard unit>]
[NOREMAP]

Determines which Clipboard unit to use during cut and
paste operations.
Turns off color mapping so that the system displays
picture files using the colors with which they were saved.

Workbench-Related Command Reference 7-5

Font
Specifies the fonts used by the system.

Format FONT [FROM <filename>] [EDIT | USE | SAVE]

Template

Location

[PUBSCREEN <public screen name>]

FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Extras: Prefs

Example:
1> FONT

Opens the Font editor, the same as double-clicking on the Font icon

IControl
Specifies parameters used by the operating system.

Format ICONTROL [FROM <filename>]
[EDIT | USE | SAVE] [PUBSCREEN <public screen
name>]

Template

Location

FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Extras :Prefs

Example:
1> ICONTROL Prefs/Presets/IControl.pre

Opens the IControl editor and loads the settings saved in the
IControl.pre preset file for editing.

7-6 Workbench-Related Command Reference

Input
Specifies different speeds for the mouse and keyboard and selects a
national keyboard.

Format INPUT [FROM <filename>] [EDIT | USE | SAVE]
[PUBSCREEN <public screen name>]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Location Extras:Prefs

Example:
1> INPUT Prefs/Presets/Input.fast USE

loads and sets the settings from the Input.fast preset without opening
the editor. If the system is rebooted, the previously saved default
settings are used.

Locale
Allows you to choose the languages available on the system.

Format LOCALE [FROM <filename>] [EDIT | USE | SAVE]
[PUBSCREEN <public screen name>]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Location ExtrasiPrefs

Example:
1> LOCALE Prefs/Presets/Locale.UK SAVE

Loads the settings from the Locale.UK preset and saves them as the
default without opening the editor. The system retains the Locale.UK
settings after rebooting.

Workbench-Related Command Reference 7-7

Overscan
Changes the sizes of the display areas for text and graphics.

Format OVERSCAN [FROM <filename>]
[EDIT | USE | SAVE] [PUBSCREEN <public screen
name>]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Location Extras :Prefs

Example:
1> OVERSCAN PUBSCREEN MyBench

Opens the Overscan editor on the public screen named MyBench.

Palette
Changes the colors of the Workbench screen.

Format PALETTE [FROM <filename>] [EDIT | USE | SAVE]

Template FROM, EDIT/S, USE/S, SAVE/S

Location Extras :Prefs

7-8 Workbench-Related Command Reference

Pointer
Changes the appearance of the mouse pointer.

Format POINTER [FROM <filename>] [EDIT | USE | SAVE]
[CLIPUNIT clipboard unit>] [NOREMAP]

Template FROM.EDIT/S.USE/S.SAVE/S.CLIPUNIT/K/N,
NOREMAP/S

Location Extras:Prefs

Example:
1> POINTER CLIPUNIT 1

Opens the Pointer editor, setting the Clipboard unit to 1. This is
useful if the default Clipboard unit (0) is already in use.

Printer
Specifies a printer and print options.

Format PRINTER [FROM <filename>] [EDIT | USE | SAVE]
[PUBSCREEN <public screen name>j [UNIT]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K,
UNIT/S

Location Extras:Prefs

Example:
1> PRINTER Prefs/Presets/Printer.post UNIT

Opens the Printer editor, loading the Printer.post preset. A text
gadget appears in the editor window so that the default printer unit
can be specified for the preset.

Workbench-Related Command Reference 7-9

PrinterGfx
Specifies graphic printing options.

Format PRINTERGFX [FROM <filename>]
[EDIT | USE | SAVE] [PUBSCREEN <public screen
name>]

Template FROM,EDIT/S)USE/S,SAVE/S)PUBSCREEN/K

Location Extras:Prefs

PrinterPS
Controls the features of PostScript printers.

Format PRINTERPS [FROM <filename>]
[EDIT | USE | SAVE] [PUBSCREEN <public screen
name>]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K

Location Extras:Prefs

This editor only applies if you have a PostScript printer and if you
choose PostScript in the Printer Preferences editor.

7-10 Workbench-Related Command Reference

ScreenMode
Selects a display mode for the Workbench screen.

Format SCREENMODE [FROM <filename>]
[EDIT | USE | SAVE]

Template FROM,EDIT/S,USE/S,SAVE/S

Location Extras :Prefs

Example:
1> SCREENMODE Prefs/Presets/DTPscreen USE

You are prompted to close all non-drawer windows; the system resets
and uses the settings saved in the DTPscreen file. The editor window
does not open. When the system is rebooted, the display mode
returns to the last selection saved.

Serial
Sets the specifications for communication through the serial port.

Format SERIAL [FROM <filename>] [EDIT | USE | SAVE]
[PUBSCREEN <public screen name>] [UNIT]

Template FROM,EDIT/S,USE/S,SAVE/S,PUBSCREEN/K,
UNIT/S

Location Extras: Prefs

Example:
1> SERIAL Prefs/Presets/Serial.9600 PUBSCREEN
MidTerm UNIT

Opens the Serial editor, loading the Serial.9600 preset. The editor
opens on the MidTerm public screen and its window contains a Unit
gadget.

Workbench-Related Command Reference 7-11

Sound
Controls the type of sound and sound attributes produced by the
Amiga.

Format SOUND [FROM <filename>] [EDIT | USE | SAVE]
[PUBSCREEN <public screen name>]

Template FROM,EDIT/S USE/S SAVE/S PUBSCREEN/K

Location Extras :Prefs

Time
Sets the system clock.

Format TIME [EDIT | SAVE] [PUBSCREEN <public screen
name>]

Template EDIT/S,SAVE/S,PUBSCREEN/K

Location Extras: Prefs

Since setting the time from the Shell always involves saving, the USE
option is omitted for the Time editor.

7-12 Workbench-Related Command Reference

WBPattern
Creates background patterns for the Workbench and Workbench
windows.

Format WBPATTERN [FROM <filename>]
[EDIT | USE | SAVE] [CLIPUNIT clipboard unit>]
[NOREMAP]

Template FROM, EDIT/S, USE/S, SAVE/S, CLIPUNIT/K/N,
NOREMAP/S

Location Extras: Prefs

Example:
1> WBPattern Prefs/Presets/Wallpaper.pattern
NOREMAP

Opens the WBPattern editor, loading the Wallpaper.pattem preset.
The NOREMAP option prevents the remapping of colors in loaded
pictures and patterns.

Commodities Programs
The following commands invoke the Workbench Commodity
Exchange utilities. They are located in the Tools/Commodities
directory.

The following arguments in Commodities program format statements
have the same meaning for each command in which they appear.
These are the same as entering the corresponding Tool Type in the
icon's Information window.

Workbench-Related Command Reference 7-13

Argument Meaning

[CX_PRIORITY Sets the priority of the commodity in relation to all the
<priority>] other Commodity Exchange programs. The default

value is 0; values higher than 0 give priority over
other commodities in regard to hot keys and other
commodity related issues. This does not affect task
priorities.

[CX_POPKEY
<key>]

Allows you to specify the hot key that opens the
program's window, if any. When specifying more than
one key, enclose the keys in double quotation marks.
(For example, CX_POPKEY="Shift F1").

[CX_POPUP=
<yes/no>]

Selects whether the program window opens when the
command is given.

AutoPoint
Automatically selects any window the pointer is over.

Format AUTOPOINT [CXJPRIORITY <priority>]

Template

Location

CX_PRIORITY/N/K

Extras :Tools/Commodities

Press Ctrl+C or use the BREAK command to exit AutoPoint when it
is started from a Shell.

7-14 Workbench-Related Command Reference

Blanker
Causes the monitor screen to go blank or display an animation if no
input has been received within a specified period of time. This helps
preserve your monitor.

Format BLANKER [CX_PRIORITY <priority>]
[CX_POPKEY<key>] [CX_POPUP=<yes|no>]
[SECONDS <timeout>] [CYCLECOLORS <yes | no>]
[ANIMATION <yes | no>]

Template CX_PRIORITY/N/K,CX_POPKEY/K,CX_POPUP/K,S
ECONDS/N/K,CYCLECOLORS/K,ANIMATION/K

Location Extras:Tools/Commodities

The arguments for Blanker are the same as the Tool Types in
Blanker's Information window.

Press Ctrl+C or use the BREAK command to exit Blanker when it is
started from a the Shell.

Example 1:
1> BLANKER SECONDS 45

The Blanker window opens and 45 is displayed inside its text gadget.
If no mouse or keyboard input is received during a 45 second interval,
the screen goes blank.

Example 2:
1> BLANKER CX_POPUP=no

The Blanker program starts. If no input is received within 60 seconds
(the default), the screen goes blank. The Blanker window does not
open.

A further example using Blanker appears in Chapter 8.

Workbench-Related Command Reference 7-15

ClickToFront
Allows you to bring a window to the front of the screen by
double-clicking on it.

Format CLICKTOFRONT [CX_PRIORITY <priority>]
[QUALIFIER <qualifier>]

Template CX_PRIORITY/N/K,QUALIFIER/K

Location ExtrasrTools/Commodities

ClickToFront does not open a window. The arguments are the same
as the Tool Types in ClickToFront's Information window.

Press Ctrl+C or use the BREAK command to exit ClickToFront when
it is started from a Shell.

CrossDOS
Sets text filter and conversion options for CrossDOS devices.

Format CROSSDOS [CXJPRIORITY <priority>]
[CXJPOPKEY <key>] [CX_POPUP <yes|no>]

Template CX_PRIORITY/N/K,CX_POPKEY/K,CX_POPUP/K,

Location Extras :Tools/Commodities

CrossDOS lets you read from and write to MS-DOS formatted disks
using your standard Amiga drives.

Press Ctrl+C or use the BREAK command to exit CrossDOS when it
is started from a Shell.

7-16 Workbench-Related Command Reference

Exchange
Monitors and controls the Commodity Exchange programs.

Format EXCHANGE [CX_PRIORITY <priority>]
[CX_POPKEY<key>] [CX_POPUP <yes | no>]

Template CX_PRIORITY/N/K,CX_POPKEY/K,CX_POPUP/K

Location Extras:Tools/Commodities

Press Ctrl+C or use the BREAK command to exit Exchange when it is
started from a Shell.

Example:
1> EXCHANGE CX_POPKEY "Shift FI"

The Exchange program is started and its window appears on the
screen. When its window is hidden, pressing Shift+Fl reveals it.

FKey
Assigns commands to special key sequences, eliminating the need for
repetitive typing.

Format FKEY [CX_PRIORITY <priority>]
[CX_POPKEY <key>] [CXJPOPUP <yes|no>]

Template CX_PRIORITY/N/K,CX_POPKEY/K,CX_POPUP/K

Location Extras :Tools/Commodities

FKey assigns any of eight commands to any key sequence that can be
entered.

Press Ctrl+C or use the BREAK command to exit FKey when it is
started from a Shell.

Workbench-Related Command Reference 7-17

MouseBlanker
Removes the mouse pointer from the screen while entering input
from the keyboard.

Format MOUSEBLANKER \CX_PRIORITY <priority>]

Template CX_PRIORITY/N/K

Location Extras :Tools/Commodities

Press Ctrl+C or use the BREAK command to exit MouseBlanker
when it is started from a Shell.

NoCapsLock
Disables the Caps Lock key.

Format NOCAPSLOCK [CX_PRIORITY<priority>]

Template CX_PRIORITY/N/K

Location ExtrasiTools/Commodities

Press Ctrl+C or use the BREAK command to exit NoCapsLock when
it is started from a Shell.

7-18 Workbench-Related Command Reference

Other Workbench-Related Tools and
Programs
The following group of commands invoke other Workbench tools,
utilities, and programs.

Calculator
Provides an on-screen calculator.

Format CALCULATOR [PUBSCREEN <public screen
name>] [TAPE <window>]

Template PUBSCREEN,TAPE/K

Location Extras .Tools

The output of the Calculator can be copied and pasted into any
console window, such as the Shell or ED.

TAPE creates a Calculator window of a specific size in which your
input and output is displayed. The specification is in the form of:

TAPE=RAW:x/y/width/height/title/options
For a description of the options and arguments used for the TAPE
window, see the description of window specification for the
NEWSHELL command in Chapter 6.

Workbench-Related Command Reference 7-19

Clock
Provides an on-screen clock.

Format CLOCK [DIGITAL] [<LEFT>] [<TOP>] [<WIDTH>]
[<HEIGHT>] [24HOUR] [SECONDS] [DATE]
[<FORMATxn>] [PUBSCREEN <public screen
name>]

Template DIGITAL/S,LEFT/N,TOP/N,WIDTH/N,
HEIGHT/N,24HOUR/S,SECONDS/S,DATE/S,
FORMAT/N,PUBSCREEN/K

Location SYS:Utilities

The DIGITAL option opens a digital clock. A resizable analog clock is
the default.

The LEFT, TOP, WIDTH, and HEIGHT options allow you to specify
the size and position of the clock. The keywords are optional; if not
given, the numerical arguments are interpreted by their position as
follows:

1st number
2nd number
3rd number
4th number

The clock opens <n> pixels from the left edge of the screen.
The clock opens <n> pixels from the top of the screen.
The analog clock is <n> pixels wide.
The analog clock is <n> pixels high.

For example, to specify only the width and height of the Clock, use
the WIDTH and HEIGHT keywords. When entering only two
numbers, the clock interprets them as the LEFT and TOP positions.
WIDTH and HEIGHT are not available if you use the DIGITAL
option.

The 24HOUR option displays the time in 24 hour mode, which is not
available for the analog clock.

The SECONDS option displays a second hand on the analog clock and
has no effect if DIGITAL is specified.

The DATE option displays the date.

The FORMAT option applies only to the digital clock. It takes a value
from 0 to 5, which determines which of the six digital formats is used.

7-20 Workbench-Related Command Reference

Formats 4 and 5 vary, depending on your Locale Preferences Editor
settings. To specify a digital format, either include the FORMAT
keyword or use LEFT, TOP, WIDTH, and HEIGHT values; the
WIDTH and HEIGHT values function as placeholders only and are
ignored.

Example 1:

To open a clock that is 75 pixels from the left edge of the screen, 75
pixels from the top edge of the screen, 300 pixels wide and 100 pixels
high, enter:

1> CLOCK 75 75 300 100

Example 2:

To use the SECONDS and DATE options, enter:
1> CLOCK SECONDS DATE

Example 3:

To open a 24-hour digital clock with seconds that is 320 pixels from
the left edge of the screen and in the screen's title bar (0 pixels from
the top), enter:

1> CLOCK DIGITAL 320 0 FORMAT 2
For more examples using Clock, see Chapter 8.

CMD
Redirects serial or parallel output to a file.

Format CMD <devicename> <filename> [OPT S | M | N]

Template DEVICENAME/A,FILENAME/A,OPT/K

Location Extras :Tools

The <devicename> can be serial or parallel. To redirect printer
output, it should be the same device as specified in the Printer editor.
<Filename> is the name of the file to which the redirected output
should be sent.

Workbench-Related Command Reference 7-21

The CMD options are as follows:

S Skip any short initial write (usually a reset if redirecting a
screen dump).

M Redirect multiple files until a BREAK command or Ctrl+C is
entered.

N Notify user of progress (messages are displayed on the
screen).

Example:
1> CMD parallel RAM:cmd_file

Any output sent to the parallel port is rerouted to a file in RAM:
called cmd_file.

DiskCopy
Copies the contents of one disk to another.

Format DISKCOPY [FROM] <device> [TO] <device>
[NAME <name>] [NOVERIFY] [MULTI]

Template FROM/A,TO/A,NAME/K,NOVERIFY/S,MULTI/S,

Location SYSiSystem

The <device> parameters specify the name of the disk devices to copy
from and to copy to; for example, DFO: and DF1:.

By default, the destination disk has the same name as the source
disk. If you specify the NAME option, you can give the destination
disk a different name from the source disk.

Normally during a DiskCopy, the Amiga copies and verifies each
cylinder of data. The NOVERIFY option allows you to skip the
verification process, making the copy faster.

The MULTI option loads the data on the source disk into memory,
allowing you to make multiple copies without having to read the data
from the source disk each time.

7-22 Workbench-Related Command Reference

Example 1:
1> DISKCOPY DFO: TO DF2:

copies the contents of the disk in drive DFO: to the disk in drive DF2:
overwriting the contents of the disk in drive DF2:.

Example 2:
1> DISKCOPY DFO: TO DF2: NAME NewDisk NOVERIFY

copies the contents of the disk in drive DFO: to the disk in drive DF2:
and gives the disk in drive DF2: the name NewDisk. The disk is not
verified as it is copied.

FixFonts
Updates the .font files of the FONTS: directory.

Format FIXFONTS

Template (none)

Location SYSiSystem

FixFonts does not open a window or produce any output. While the
FONTS: directory is updated, the drive activity light is on. When the
update is finished, the light goes off and the Shell prompt reappears.
If the disk needed to update the FONTS: directory is not available or
if there is a problem with it, FixFonts produces a standard requester
concerning the problem.

Use FixFonts whenever you make changes in the FONTS: directory;
for example, copying new font files or deleting single font sizes.

Workbench-Related Command Reference 7-23

Format
Formats a disk for use with the Amiga.

Format FORMAT DEVICE | DRIVE <device> NAME <name>
[OFS | FFS]
[INTERNATIONAL | NOINTERNATIONAL]
[DIRCACHE | NODIRCACHE] [NOICONS] [QUICK]

Template DEVICE=DRIVE/K/A,NAME/K/A,OFS/S,FFS/S,
INTL=INTERNATIONAL/S,
NOINTL=NOINTERNATIONAL/S,DIRCACHE/S,
NODIRCACHE/S,NOICON/S,QUICK/S

Location SYS:System

You must specify both the DEVICE and the NAME keywords to
format a disk. The name can be up to thirty-one characters in length.
If there are spaces in the name, enclose it in double quotation marks.

The OFS option formats the disk using the Old File System. The FFS
option formats the disk using the Fast File System. FFS formatted
disks are faster than OFS formatted disks; however, the FFS disks
are not compatible with Amiga system software releases prior to 2.04.
The default setting for floppy disks is OFS and for PCMCIA cards and
hard drive partitions is FFS.

The INTERNATIONAL option formats disks using the international
versions of the file systems. International file systems handle upper
and lower letter case conversions of international characters in file
names. The NOINTERNATIONAL option forces the non­
international file system on devices for which International mode is
the default. The default setting for floppy disks and PCMCIA cards is
NOINTERNATIONAL and for hard drive partitions is
INTERNATIONAL. Disks created with INTERNATIONAL mode set
are not compatible with Amiga system software releases prior to 2.04.

The DIRCACHE option enables directory caching, which speeds the
opening of drawers, files, requesters, and listings. Using directory
caching for floppy disks and systems with slow hard drives speeds
directory listings and Workbench window opening. Directory caching
is not useful on systems with fast hard drives. The NODIRCACHE
option disables directory caching. Disks formatted with Directory

7-24 Workbench-Related Command Reference

Caching set are not compatible with Amiga system software releases
prior to 3.0. The default setting for floppy disks, PCMCIA cards, and
hard drives is NODIRCACHE.

The NOICONS option prevents a Trashcan icon and directory from
being added to the newly formatted disk.

The QUICK option specifies that Format only formats and creates the
root block (and track), the boot block (and track) and creates the
bitmap blocks. This can only be used with previously formatted disks.
However, you cannot use this to reformat disks for AmigaDOS that
were previously formatted for CrossDOS and vice versa.

Example 1:
1> FORMAT DRIVE DFO: NAME EmptyDisk

Formats the disk in drive DFO:, erasing any data, and names the disk
EmptyDisk.

Example 2:
1> FORMAT DRIVE DF2: NAME NewDisk QUICK

Reformats, or erases, a disk that already contains data.

For more examples using the Format command, see Chapter 8.

Workbench-Related Command Reference 7-25

GraphicDump
Prints the frontmost screen.

Format GRAPHICDUMP [TINY | SMALL | MEDIUM |
LARGE | <xdots>:<ydots>]

Template TINY/S,SMALL/S,MEDIUM/S,LARGE/S,
<xdots>: <ydots>/S

Location Extras :Tools

GraphicDump waits ten seconds before starting to print to allow you
to bring the desired screen to the front of the display.

The size options, which correspond to the program's acceptable Tool
Types, determine the width of the printout:

TINY 1/4 the total width allowed by the printer
SMALL 1/2 the total width allowed by the printer
MEDIUM 3/4 the total width allowed by the printer
LARGE The full width allowed by the printer

The printout's height maintains the proportions of the screen.

To specify exact dimensions, substitute the absolute width in printer
dots for <xdots> and the absolute height for <ydots>, separated by a
colon (:).

Example 1:
1> GRAPHICDUMP SMALL

produces a printout of the frontmost screen that is about one-half the
total width allowed by the printer.

Example 2:
1> GRAPHICDUMP 600:300

produces a printout that is 600 dots wide by 300 dots high.

7-26 Workbench-Related Command Reference

IconEdit
Edits the appearance and type of icons. IconEdit opens the IconEdit
program. The command does not support any arguments. For
detailed information on IconEdit, see the Workbench User's Guide.

InitPrinter
Initializes a printer for print options specified in the Preferences
editors.

Format INITPRINTER

Template (none)

Location Extras :Tools

After running InitPrinter, the Shell prompt returns when the printer
resets. The printer is initialized automatically on first access, but if it
is powered off, you might need to reinitialize it with InitPrinter.

Intellifont
Runs the Intellifont program to manage outline fonts.

Format INTELLIFONT [VALIDATE]

Template VALIDATE/S

Location SYS:System

Intellifont installs new outline fonts on your system, specifies new
sizes for existing fonts, and deletes unneeded fonts. You can also
create bitmap versions of any size outline font for applications that do
not support outline fonts directly.

Setting the VALIDATE option checks fonts to be sure they are
installed properly and that everything needed to run them is present.

Workbench-Related Command Reference 7-27

KeyShow
Displays the current Keymap. There are no arguments for the
KeyShow command. For detailed information about KeyShow, see
the Workbench User's Guide.

MEmacs
Enables screen-oriented text editing.

Format MEMACS [<filename>] [OPT W] [GOTO <n>]

Template FROM/M,OPT/K,GOTO/K

Location Extras:Tools

MEmacs is described in Chapter 4 of this manual.

More
Displays the contents of a designated ASCII file in the Shell window.
More does not have an icon. It has been superseded by the MultiView
program; however, it is still available.

Format MORE <filename>

Template (none)

Location SYS:Utilities

Specify the complete path if the file is not in the current directory.
More displays a file requester if you do not specify a file.

Pressing the H key provides explanations for More's command keys.
The following options can be used with More:

<Space>
<Return>
q or Ctrl+C
h
/string

Next Page (More).
Next Line.
Quit.

Help.
Search for string (case-sensitive). Entering n following
the string searches for the next occurrence of the string.

7-28 Workbench-Related Command Reference

.string Search for string (not case-sensitive).
Find next occurrence of search string.
Refresh window.
First page.
Last page.
Move N% into the file.

n
Ctrl+L
<
>
%N
b or <Backspace> Previous page (less).
E Edit the current file using the editor set in ENV:EDITOR.

More also accepts input from a PIPE. The Previous Page (Backspace
or b), Last Page (>), and Move N% into file (%N) commands are
disabled when the More input is from a PIPE because standard input
from a PIPE is of unknown length.

When you use More from the Shell, you can open an editor to use on
the file you are viewing (press Shift+E) if the EDITOR variable is
defined. Provide the complete path to the specified editor in the
EDITOR variable; for example, C:ED.

Example:
1> MORE DFOiTestFile

displays the contents of the ASCII file called TestFile on the disk in
drive DFO:.

Workbench-Related Command Reference 7-29

MultiView
Displays picture files, text files, AmigaGuide files, sound files, and
animated graphics files.

Format MULTIVIEW [FILE <filename>] [CLIPBOARD]
[CLIPUNIT clipboard unit>] [SCREEN]
[PUBSCREEN <public screen name>]
[REQUESTER] [BOOKMARK] [FONTNAME <font
name>] [FONTSIZE] [BACKDROP]
[WINDOW] [PORTNAME <ARexx port name>]

Template FILE, CLIPBOARD/S, CLIPUNIT/K/N, SCREEN/S,
PUBSCREEN/K,REQUESTER/S,BOOKMARK/S,
FONTNAME/K,FONTSIZE/K/N,BACKDROP/S,
WINDOW/S,PORTNAME/K

Location SYS:Utilities

Be sure to specify the complete path to the file if it is not in the
current directory. MultiView displays a file requester if no file is
specified.

If CLIPBOARD is specified, the Clipboard is viewed instead of a file.
CLIPUNIT specifies the Clipboard unit to use when using the
CLIPBOARD keyword.

SCREEN indicates that you want the object to appear on its own
screen rather than in a window on the Workbench screen, using the
display mode specified by the object. For example, if an ILBM picture
file is Low Res, MultiView opens a Low Res screen.

If REQUESTER is specified, MultiView displays a file requester.

BOOKMARK recalls the object and position when opening a file with
a bookmark.

FONTNAME specifies the font to use when viewing text objects.
FONTSIZE specifies the font size in points to use when viewing text
files.

BACKDROP indicates that the window should be a backdrop window.

WINDOW allows the MultiView window to open without requesting a
file to load. Using this option lets you keep a small MultiView

7-30 Workbench-Related Command Reference

window open on the Workbench screen so you can drag icons into it
whenever necessary.

PORTNAME allows you to specify an ARexx port name when you run
MultiView. If you do not specify a name, each MultiView window is
given the default port name of MultiView.x, where x is a slot number
starting from 1. (For example, if you have three MultiView display
windows open, their port names are MultiView. 1, MultiView.2, and
MultiView.3.) This port name allows you to refer to a particular
MultiView display from within an ARexx script.

MultiView supports the following ARexx commands:

OPEN Open an object from the specified file name or
Clipboard unit. The options are as follows:
FILENAME/K Specifies the object file name.
CLIPBOARD/S Specifies that the object

comes from the Clipboard.
CLIPUNIT/K/N Specifies the Clipboard unit

from which to obtain the object
if using the CLIPBOARD option.

RELOAD Reload the current object.
SAVEAS Save the object to the specified file. If there is a

selected block, then only that block is saved.
SAVEAS has one option: NAME/K.

PRINT Print the current contents. If there is a selected
block, then only that block is printed.

ABOUT Display the About requester.
QUIT Close MultiView.
COPY Copy the current contents to the Clipboard. If

there is a selected block, then only that block is
copied.
Clear the selection block.CLEARSELECTED

Workbench-Related Command Reference 7-31

GETTRIGGERINFO

DOTRIGGERMETHOD

SCREEN

PUBSCREEN

GETCURRENTDIR

GETFILEINFO

GETOBJECTINFO

MINIMUMSIZE

NORMALSIZE

MAXIMUMSIZE

Returns the commands for the trigger methods of
the current object. The options are VAR/S and
STEM/K.
If using the STEM option, the following stem
extensions are used:
.COUNT
.n.LABEL
.n.COMMAND
.n.METHOD

Number of elements
Label
Command
Numeric method

Perform the trigger method on the current object.
The option is METHOD/A.
Specify whether to display object on a screen.
The options are TRUE/S and FALSE/S.
Specify the name of the public screen on which to
display the object. The option is NAME/A.
Returns the full name of the current directory
associated with the current object.
Returns the complete path and file name
associated with the current object.
Returns the name, basename, group, and ID for
the current object. The options are VAR/S and
STEM/K.
If using the STEM option, the following stem
extensions are used:
.FILENAME
.NAME
.BASENAME
.GROUP
.ID

File name of object
Descriptive name of the DataType
Base name of the DataType
Group containing the DataType
ID string for the DataType

Size the window to its minimum size for the
contents type.
Size the window to its normal size for the contents
type.
Size the window to its maximum size for the
contents type.
M ove the window to the front of the display.WINDOWTOFRONT

7 -3 2 Workbench-Related Command Reference

WINDOWTOBACK
SCREENTOFRONT
SCREENTOBACK
ACTIVATEWINDOW
BEEPSCREEN

Move the window to the back of the display.
Bring the screen to the front of the display.
Send the screen to the back of the display.
Activate the window.
Cause a display beep in the screen that the
window resides in.

NoFastMem
Forces the Amiga to use only Chip RAM. NoFastMem disables any
Fast (or expansion) RAM used by the system. The expansion memory
can be turned on again by sending the NoFastMem program a break,
either via the BREAK command or by pressing Ctrl+C. NoFastMem
has no options. For detailed information on NoFastMem, see the
Workbench User's Guide.

PrepCard
Prepares a PCMCIA memory card for use as a disk device or system
RAM on systems with card slots.

Format PREPCARD [DISK | RAM]

Template DISK/S,RAM/S

Location Extras :Tools

The DISK option prepares the PCMCIA card for use as disk device
CCO:. Reading and writing to the DISK-prepared card is the same as
reading and writing to a floppy disk. We recommend that you use a
battery-backed PCMCIA card as disk if you wish to preserve your
work.

The RAM option prepares the PCMCIA card for use as system RAM.
Booting or rebooting with the card inserted adds the card's memory to
the existing memory in the Amiga. You can use any PCMCIA cards
as RAM, except Read Only (ROM) cards.

The DISK and RAM options are mutually exclusive; if you specify
both options, PrepCard uses the first option specified and disregards

Workbench-Related Command Reference 7-33

the other. An error message results if you try to use PrepCard on a
system that does not have a card slot.

Chapter 8

Command Examples

The command examples elsewhere in this book are primarily to
illustrate the proper syntax and general operation of AmigaDOS.
This chapter shows you how to use the commands needed for a wide
variety of common tasks.

The chapter is organized as follows:

• Basic tasks
• Occasional tasks
• Advanced tasks

Basic Tasks
This section is oriented toward the novice Shell user, showing
commands and short scripts to accomplish basic tasks. Use the
commands shown as models for your own commands, substituting the
names of your disks, directories, and files. To use the commands,
type what appears after the prompt (usually 1>). Press Return to
enter the command line you type.

Opening a Shell Window
To open a Shell window from Workbench:

1. Open the System drawer on your Workbench disk or partition.

2. Double-click on the Shell icon.

OR

1. Choose the Execute Command... item from the Workbench menu.

8-2 Command Examples

2. In the requester that appears, enter the command NEWSHELL.
To open another Shell window from a Shell, enter the
NEW SHELL com mand at a Shell prompt:

1> NEWSHELL

Running Programs from the Shell
To run a program that is on the search path, enter the
program nam e at the prom pt:

1> Clock
To run a program that is not on the search path, enter the full
path to the program :

1> Tempus:Fugit/Utils/SuperClock
To run a program that is not on the search path but is in a
subdirectory of the current directory, enter the relative path
to the program :

1> Utils/SuperClock

Stopping a Program
AmigaDOS commands and most Workbench programs started from
the Shell can be exited, or stopped if currently running, by pressing
Ctrl+C. This is important in case you need to abort a pattern
matching DELETE, or to interrupt a directory listing or other lengthy
process. Scripts can be stopped with Ctrl+D.

To stop a com m and or program that is currently running:

1. Make the Shell window from which the command or program was
started the current window by clicking in it.

2. Press Ctrl+C.

In some cases you may need to press Return after Ctrl+C to bring
back the Shell prompt.

To stop a scrip t that is currently running:

Command Examples 8-3

1. Make the Shell window from which the script was started the
current window by clicking in it.

2. Press Ctrl+D.

Changing the Current Directory
The current directory is normally part of the standard Shell prompt,
as in 1 .Workbench: >. In the following examples, notice the prompt
to see how the current directory changes.

To save typing, change the current directory to the one in
which you are working.

If you are issuing two or more commands that refer to things in a
certain directory, make it the current directory using the CD
command. The following two sets of commands both accomplish the
same task:

l.Work:> COPY Storage/Keymaps/usa2 TO DEVS:Keymaps
l.Work:> DELETE Storage/Keymaps/usa2
l.Work:> CD Storage/Keymaps
1.Storage:Keymaps> COPY usa2 TO DEVS:Keymaps
1.Storage:Keymaps> DELETE usa2

Entering the second set of commands instead of the first saves over a
dozen keystrokes. This savings is even greater if further work in
Storage/Keymaps is needed.

To change the current directory with a s little typing as
possible, omit the CD command, and use the slash and colon to
move though the directory structure:

1.Workbench:Devs/Monitors> /Printers
1.Workbench:Devs/Printers> :Prefs/Presets
1.Workbench:Prefs /Presets> /
1.Workbench:Prefs>

To switch quickly between two current d irectories, u se the
PCD scrip t (located in the S: directory):

1.Workbench:> PCD Devs/DOSDrivers
1.Workbench:Devs/DOSDrivers> Extras:Storage
1.Extras:Storage> PCD
1.Workbench:>

8-4 Command Examples

To see the current directory, i f the Shell prom pt does not show
it, u se the CD com m and alone:

1> CD
Workbench:

Changing the Search Path
To create a directory on the SYS: volume for additional
com m ands and add it to the search path for the current Shell:

1> MAKEDIR SYS:MyCommands
1> PATH SYS:MyCommands ADD

To add M yCommands to the search path, effective for the
whole system , use an ASSIGN com m and in stead of PATH:

1> ASSIGN C: SYS:MyCommands ADD
To have the Am iga look for com m ands in a C directory on any
disk inserted in drive DFO:, use ASSIGN with the PATH
option:

1> ASSIGN C: DF0:C PATH

Displaying the Contents of a Directory
To d isp lay the nam es of files and subdirectories in a directory
use DIR:

1> DIR DEVS:
DataTypes (dir)
Monitors (dir)
DOSDrivers (dir)
Keymaps (dir)
Printers (dir)

clipboard.device
DOSDrivers.info
mfm.device
parallel.device
printer.device
serial.device

To d isp lay the nam es of files, subdirectories, and files in the
subdirectories in a directory, add the ALL keyword (a p artia l
listing of the output is shown here):

DataTypes.info
Keymaps.info
Monitors.info
postscript_init_ps
Printers.info
system-configuration

Command Examples 8-5

1> DIR DEVS: ALL
DataTypes (dir)

8SVX
AmigaGuide
ANIM
CDXL
FTXT
ILBM

Monitors (dir)
A2024

8SVX.info
AmigaGuide.info
ANIM.info
CDXL.info
FTXT.info
ILBM.info
A2024.info

To disp lay the nam es of files only, with no d irectories, add the
F IL E S keyword:

1> DIR DEVS: FILES
clipboard.device
DOSDrivers.info
mfm.device
parallel.device
printer.device
serial.device

DataTypes.info
Keymaps.info
Monitors.info
postscript_init_jps
Printers.info
system-configuration

To d isp lay the nam es of files only, without .info files, use
pattern m atching:

1> DIR DEVS:-(#?.info) FILES
clipboard.device mfm.device
parallel.device postscript_init_ps
printer.device serial.device
system-configuration

To disp lay inform ation about files that includes their size and
protection bits, without date and time, u se LIST with the
F IL E S and NODATES keywords:

1> LIST DEVS:-(#?.info) FILES NODATES
clipboard.device 6944 --- rw-d
mfm.device 6684 --- rw-d
parallel.device 4272 --- rw-d
postscript_init_ps 5014 --- rw-d
printer.device 27420 --- rw-d
serial.device 5412 --- rw-d
system-configuration 232 --- rw-d

8-6 Command Examples

To d isp lay inform ation about a single file, u se L IST with the
path to the file:

1> LIST S :Startup-sequence
Directory "S:" on Tuesday Ol-Dec-92
Startup-sequence 1360 -s--rw-d 30-Oct-92 12:00:21
1 file - 4 blocks used

To d isp lay the am ount of space u sed by a directory and its
contents, including all files in subdirectories, u se the ALL
keyword:

1> LIST ALL
After the contents of the current directory are listed, a summary line
such as the following is displayed:

TOTAL: 113 files - 762 blocks used
Divide the number of blocks by two to get the number of kilobytes
(KB).

To see inform ation from LIST, DIR, or other com m ands that
have scrolled off the Shell window:

Select the Shell window's zoom gadget once to switch to its alternate
size, which normally fills the screen. As much of the previous output
as fits fills the window. Select zoom again to restore the window to its
previous size.

If the window's maximum height is not large enough to reveal the
desired output, reissue the command by pressing the up arrow and
then Return. Pause and resume the scrolling of the output when
necessary by pressing the spacebar and backspace, respectively.

To com bine the CD and DIR com m ands:

Create the following script and save it as S:CDD. (For an example of
how to create a script, see "Creating a User-startup File" on page 8-8.)

.KEY dirpath
CD <dirpath>
DIR

Set the script's s protection bit by entering PROTECT S:CDD +b.
Then whenever you enter CDD followed by the path to a directory,
this script makes that directory the current directory and lists its
contents.

Command Examples 8-7

Copying Files and Directories
When copying a single file from one place to another, you need to
include only the paths for each. FROM and TO keywords are
optional. For clarity, most COPY examples in this book use the TO
keyword, but omit the FROM keyword.

To copy a file to an existing directory using optional
keyw ords:

1> COPY FROM DFO:Pix/Fractal3 TO Work:Pictures
To copy the file om itting optional keywords:

1> COPY DFO:Pix/Fractal3 Work:Pictures
To copy a file and renam e it at the sam e time, include the new
file nam e in the TO argum ent:

1> COPY DFO:Pix/Fractal3 TO Work:Pictures/BestPic
To copy all the files in a directory to another directory,
w ithout copying the directory itse lf or the su bdirectories it
contains:

1> COPY DFO:Pix TO Work:Pictures
The contents of DF0:Pix are deposited in Work:Pictures, not grouped
in their own directory. If Pix contained directories, they are not
copied, but any .info files for drawers Pix contained are copied,
making it appear at first that the drawers were copied.

To copy all the files in a directory to another directory,
copying the directory itse lf but not the su bdirectories it
contains:

1> COPY DFO:Pix TO Work:Pictures/Pix
The directory Pix is created in Work:Pictures if it does not already
exist. The destination directory does not have to be the same name as
the source; you can copy to Work:Pictures/Fractals, for example.

To copy a com plete directory and its contents to another
directory, u se the ALL keyword:

1> COPY DFO:Pix TO Work:Pictures/Pix ALL
Work:Pictures/Pix is a duplicate of DF0:Pix.

8-8 Command Examples

To copy only certain files to another directory, use pattern
m atching if their nam es are sim ilar:

1> COPY DFO:Pix/Fractal[3-7] TO Work:Pictures/Pix
Files in DF0:Pix with names beginning in Fractal and ending in the
digits 3 through 7 are copied.

To copy specific files to another directory, include all the file
nam es. Change to the source directory first to avoid having to
enter the full path for each:

1> CD DFO:Pix
1> COPY Fractal3 Julia Dragon TO Work:Pictures/Pix

When copying more than one file at once without using the TO
keyword, COPY expects the last name to be the destination directory.
With whole-directory, multiple-file, and pattern matching operations,
COPY outputs the names of the files copied and directories created as
it executes.

Creating a User-startup File
A User-startup file is the Shell equivalent of the Workbench
WBStartup drawer. It is a text file that is executed as a script by the
default Startup-sequence. Place here any configuration commands,
such as ASSIGNs, and the names of programs you wish to run
automatically whenever you boot.

To create a U ser-startup file:
1> RUN ED S :User-startup

After the ED window opens, enter the commands you want on
subsequent lines. For example, you can add some cache buffers to
speed floppy access, add a directory of custom commands to the path,
and start the screen blanker, by entering these lines:

ADDBUFFERS >NIL: DFO: 25
PATH >NIL: SYS:MyCommands ADD
RUN Blanker CX_POPUP=NO SECONDS=600 ANIMATIONYES

Then save the file and exit by pressing Esc,X,Return. The next time
you boot or reboot, these commands are executed. When you have
more commands to add, edit the file by entering RUN ED S: User-
startup again.

Command Examples 8-9

Creating an Assignment
On a floppy-only system, a requester similar to that illustrated in
Figure 8-1 usually means that you need to insert the named floppy
disk.

4TI

P l e a s e i n s e r t volime
P r o fu s io n
in any d r iv e

Retry Cancel

Figure 8-1. Sample System Requester

The most likely reason for this requester on a hard disk system, aside
from entering a command with a misplaced colon (:), is that an
application you are running requires an assignment to be made with
the ASSIGN command. This is often done for you by an installation
program, but not all applications have an installation program or one
that works correctly for all systems.

The assignment tells the application to look on your hard drive
instead of a floppy drive for things it needs. If the application is one
you use regularly, you should place the ASSIGN statement in your
User-startup. When the requester first comes up, however, you can
enter the assignment in the Shell and then select the requester's
Retry gadget.

To allow you to continue your w ork with a program in stalled
from a d isk called ProFusion to the Work: volume, enter the
statem ent:

1> ASSIGN ProFusion: Work:ProFusion
where the first argument is the volume requested, followed by a
colon, and the second argument is the device and directory where
ProFusion is installed. Click the Retry gadget after entering the
command. If the statement is correct, your application works
properly and you should add the statement you entered to your User-
startup. If it does not work, the second argument needs to be
modified.

8-10 Command Examples

Accessing the Expanded ED Menus
The default S:Ed-startup file sets up a series of menus for the ED text
editor. There is also an expanded set of menus that is built into ED,
containing more options. You can make these available by renaming
Ed-startup, which prevents it from being executed.

To allow access to the expanded ED menus, enter the
follow ing command:

1> RENAME S:Ed-startup TO S :Ed-startup.not

Working with a Single Shell
Although you can open several independent Shell windows at once,
you may wish to avoid cluttering the Workbench screen with several
windows. Starting a program from a Shell normally takes over that
Shell window while the program is running, forcing you to open
another Shell to enter additional commands. Use the following
techniques to avoid this and allow any number of programs to run
from a single Shell.

To run a program in the background so that the Shell window
prom pt returns, use the RUN command:

1> RUN DMC OPT def RHYME on
[CLI 2]
1 >

The message in square brackets indicates the number of the new
process started to run the program. The prompt returns immediately.

Even when a program is run this way, the Shell window cannot be
closed until all programs started from it are exited. To avoid this, you
can detach the program using redirection.

To detach a program , RUN it, adding output redirection to the
NIL: device:

1> RUN >NIL: Multiview 8SVX/Sample
[CLI 2]
1 >

You can now close the Shell window if necessary.

Command Examples 8-11

Note Redirection to NIL: also prevents any console output
the program produces from appearing in the Shell
window.

Attaching icons
To attach an icon to a file or directory, you can create an icon with the
IconEdit tool. However, it is often easier just to copy an existing icon
with a Shell command.

You must copy a .info file of the right icon type, giving it a name that
matches the file or directory to which you are attaching it plus the
.info extension. If necessary, use the Information menu item to
adjust the Default Tool of a copied Project icon, or the Tool Types of a
copied Tool icon, as appropriate for the file.

Note The capitalization of the name under the icon matches
that given in the COPY command, regardless of the
capitalization of the associated file or directory.

To attach an icon to a file called PCX in the D ataTypes
directory, copy the .info file of an existing datatype in the
directory:

1> COPY DataTypes/ILBM.info TO DataTypes/PCX.info
An icon titled PCX appears in the DataTypes window when you open
it or choose Update from the Window menu.

Note If the icon you copy is snapshotted, the new icon retains
the original icon's position and appears directly on top
of it. Drag the new icon to a different position and
Snapshot it to keep the two icons separate.

To attach a custom icon to a d isk called VidTools, copy the
desired disk-type .info file to the root directory of the disk,
giving it the nam e disk.info:

1> COPY SYS:disk.info TO VidTools:disk.info

8-12 Command Examples

You must eject and reinsert the disk or reboot for a new disk icon to
appear on the Workbench.

Creating Scripts Conveniently
To m ake creating and editing scrip ts easier:

Create a script containing the following lines, and save it as S:Edscr.
(For an example of how to create a script, see "Creating a User-
startup File" on page 8-8.)

.KEY script/A
ED S:<script>
FAILAT 11
IF EXISTS S :<script>

PROTECT S:<script> srwd
END IF

Set the script's s protection bit by entering PROTECT S :Edscr
srwd. Now using Edscr you can create and edit scripts without
having to decide where to put them or remember to set their s bit.
Ju st enter Edscr followed by the name of a script.

When you save and exit from ED, the script you worked on is saved in
the S: directory under the name you gave. Its s protection bit is set
automatically so that you can run the script from a Shell without
needing the EXECUTE command.

Occasional Tasks
Tasks in this section are used less often, but almost every user needs
to do these things at some time. These examples assume a certain
amount of familiarity with AmigaDOS and the Shell.

Command Examples 8-13

Creating Aliases To Reduce Keystrokes
The aliases listed below can help speed your Shell work by reducing
the number of keystrokes required for common commands.

To enable these as global a liases, edit S:Shell-startup as
described previously for U ser-startup, adding these lines:

ALIAS C O CD DFO:
ALIAS cs CD SYS:
ALIAS C S S CD S:
ALIAS dO DIR DFO:
ALIAS dr DIR RAM:
ALIAS qdir DIR ~(#?.info)
ALIAS Is LIST
ALIAS cp COPY
ALIAS cc COPY [] CLONE
ALIAS del DELETE
ALIAS ren RENAME
ALIAS ns NEWSHELL
ALIAS es ENDSHELL
ALIAS pf printfiles
ALIAS fmt0 FORMAT DRIVE DFO: NAME [] FFS NOICONS
DIRCACHE
ALIAS edus RUN ED S :User-startup
ALIAS edsh RUN ED S :Shel1-startup
ALIAS ednew RUN ED RAM:newfile
ALIAS chip ECHO "There are 'avail chip' bytes of
Chip memory free."

Modify the alias names as desired. Use these as models for your own
aliases.

Customizing NEWSHELL
You can control the Shell window with the WINDOW argument of the
NEWSHELL command. It allows you to specify custom sizes,
positions, and features for the Shell window. Following are two
examples of different window specifications.

To open a convenient Shell window on your W orkbench
screen, enter the foliowring com mand in a Shell or a s a line in
U ser-startup:

NEWSHELL CON://400/100/AShell/CLOSE/
ALT0/12/640/388

8-14 Command Examples

This creates a small Shell window titled AShell that leaves the left
side of the Workbench window clear so that disk icons are not
obscured. It has a close gadget and, on a High-Res Interlace screen, it
expands to fill the entire screen except for the screen title bar when
you select its zoom gadget.

To open a Shell window on a public screen, such as
telecom m unications program 's term inal screen, use a window
specification with the SCREEN option:

CON:0/20///???/CLOSE/SCREENTerm
This creates a Shell window called ??? that is near the top of the
screen and is as wide and short as possible. The window opens on a
public screen named Term, if that screen is available. If it is not, the
Shell opens on the Workbench screen.

Modifying the Prompt
The Shell prompt is easily modified using the PROMPT command.
You can add any fixed text to the prompt string and include, reorder,
or leave out the substitution operators that display the process
number, current directory, and return code. Placing escape sequences
in the prompt string lets you make the prompt stand out visually
from the command line and command output. You can also embed a
command in the prompt with the back apostrophe feature.

Figure 8-2 illustrates two ways of modifying the prompt. The first
uses escape sequences to produce a boldface, color 2 (white) prompt;
see Appendix D for a listing of escape sequences. The second shifts
the usual position of the substitution operators, embeds a DATE
command using the back apostrophe, and changes the final character
to a dollar sign ($).

Command Examples 8-15

Figure 8-2. Sample Uses of PROMPT Command

Creating a Custom Ram Disk Icon
To have a custom icon for the Ram Disk, you need to place a COPY
statement in User-startup. First, create the icon in IconEdit. Make
sure it is a Disk type icon, then save it on your boot disk as
DEVS:Ramdisk.info.

Note This example uses the DEVS: directory, but it does not
matter where you store this icon. It is not visible, even
in Show All Files mode, because Disk icons are visible
only in the Workbench window.

To m ake your custom Ram Disk icon ap pear in the W orkbench
window, enter this line in the S:U ser-startup file, save the
changed file, and reboot:

COPY DEVS:Ramdisk.info TO RAM:disk.info
If you also want to rename Ram Disk, include a RELABEL statement
in User-startup after the COPY statement, such as:

RELABEL RAM:ramname

8-16 Command Examples

Deleting Files with Icons
To delete a file that h as an icon and the file's .info file with a
single command:

1. Create and save the following script as S:Delinf:
.KEY file/A
DELETE <file> <file>.info QUIET

2. Enter EXECUTE Delin£ with the name of the file as its
argument.

Testing Commands
It is sometimes necessary to test the results of certain commands
before using them on actual files. This is particularly true when
using complex pattern matching with potentially destructive
commands, such as DELETE, or escape sequences, with which it can
be difficult to predict the outcome. There are various ways of testing
commands that are quick and safe.

To test a potentially destructive pattern m atching com mand:

1. Enter a non-destructive command such as LIST containing the
pattern. For example,
LIST - (#?.info|#?.c|[0-9]#?)

2. Check the output to see whether the intended files were matched.

3. Modify the pattern if necessary and repeat the command until the
command lists only the desired files.

4. Enter the intended command, using the same pattern.

To test the effects of escape sequences:

1. Enter an ECHO command containing the escape sequences and
an example word. For example,
ECHO "*E[lmBOLD*E[Om"

2. Check to see whether the output is as intended.

3. Modify the escape sequences if necessary and repeat the
command until the desired result appears.

Command Examples 8-17

4. Use the escape sequences in the intended command, such as
PROMPT.

To c lear the window and reset all escape sequence m odes to
the defaults, enter:

Esc,c,Return
You must use a lower case c. After the window is cleared and reset,
the Shell displays a harmless s Unknown command message on the
window's top line.

To create a test file in the Ram Disk, enter:
1> ECHO "This is only a test" TO RAM:foo

This provides a small, expendable file on which to test other
commands. It is best to create such files in RAM:, to avoid cluttering
your disks with small, useless files. Traditionally, files like this are
named "foo" or "bar."

To test com m ands safely on actual files, copy the flies to a
directory in the Ram Disk and test with those flies:

1> COPY Work:MyFiles/#? TO RAMiTestdir

Creating a Script to Move Files
AmigaDOS does not have a Move command. Normally, there are two
ways of moving a file with AmigaDOS: a RENAME command or a
combination of COPY and DELETE commands.

Using RENAME to move a file is possible only when moving the file
to a destination on the same volume. Attempting to rename across
devices causes an error. The copy-and-delete method works in any
situation, but is cumbersome.

To create a Move com m and that lets you move a file within or
acro ss devices with a single command, create a scrip t with the
following com m ands:

1> RUN ED S:Move+
PROTECT SrMove swrd

8-18 Command Examples

Enter these commands in the ED window:
.KEY source/A,to/A
.BRA {
.KET }
FAILAT 21
RENAME >NIL: {source} TO {to}
IF WARN

COPY {source} TO {to}
IF WARN

ECHO "The file {source} could not be moved."
QUIT 20

END IF
DELETE {source} QUIET

END IF
ECHO {source} "has been moved to" {to}

Save the script and exit ED. The s protection bit is automatically set
after you exit.

Use this script the same as you would use a command. Enter MOVE
followed by two arguments: the current path of the file to move and
the path to the desired location.

Deleting with Interactive DIR
The DIR command has an interactive mode that pauses after each file
or directory it lists and allows you to enter one of several simple
commands. One option is to delete the item, which can be useful in
certain situations.

For example, if you accidentally name a file #? (the wildcard
combination that matches anything), attempting to delete it through
normal methods is inadvisable. This is because DELETE #? deletes
everything in the directory, including any other valuable files that are
there.

The interactive DIR can solve this problem and be used as a general-
purpose query/delete tool. This is helpful when you have a large
directory containing many items to delete, but the file names do not
have enough in common to make a pattern matching DELETE
practical.

Command Examples 8-19

To delete various files on a d isk called D ebris safely with an
in teractive DIR, enter:

1> DIR Debris: INTER
DIR lists the names of the files in Debris alphabetically one by one,
each followed by a question mark prompt. Press Return to go to the
next file or E to enter a directory. When the name of an unwanted
file appears, enter DEL to delete the file. Enter Q to leave the
interactive DIR.

Generating Scripts with LISTLFORMAT
One of the prime uses of the LIST command's LFORMAT option is for
automatically creating scripts used to process a series of files. You
can produce a raw script using a LIST statement with LFORMAT, a
TO argument to redirect the LIST output to a file, and pattern
matching. You can then view the script and edit it manually if
necessary before executing it.

To create a scrip t that renam es all the files in the current
directory, adds the extension .IFF to their present file nam es,
and p laces them in a directory called Pain tfiles in the Work
partition :

1> LIST #? TO T :renamer LFORMAT="RENAME %P%N TO
Work:Paintfiles/%N.IFF"

Enter ED T : renamer to check the script, which should resemble the
following. If the match pattern lists files that you did not want
processed or your LFORMAT string does not work as expected, you
can edit the script or modify and reenter the command.

RENAME Paint:Vince TO Work:Paintfiles/Vince.IFF
RENAME Paint:Henri TO Work:Paintfiles/Henri.IFF
RENAME Paint:Paul TO Work:Paintfiles/Paul.IFF
RENAME Paint:Pablo TO Work:Paintfiles/Pablo.IFF
RENAME Paint:Andy TO Work:Paintfiles/Andy.IFF

When the script is correct, leave ED and enter EXECUTE Tsrenamer.
See the "Recursive AmigaDOS Command Script" example on page 8-
26 for a more advanced use of LIST LFORMAT.

8-20 Command Examples

Customizing LIST Output
You can also use LFORMAT to customize the output of LIST for
special purposes. Save the line as an alias to make it easier to use in
the future.

To create an a lia s for LIST that d isp lays inform ation only on
files created since the date you enter, with the date first and
protection b its and time omitted:

1> ALIAS lsince LIST FILES SINCE [] LFORMAT="%D
%-25N %L"

If the current directory is S:, the output of lsince 01-sep-92
would be similar to this:

19-Oct-92 PCD 715
3 O-Nov-92 Startup-sequence 1360
Friday Shell-startup 671
Yesterday User-startup 609

Using ICONX to Run Scripts
If you prefer to work with the mouse whenever possible or you are
setting up an Amiga for a Workbench-only user, ICONX is useful.
Using C:ICONX as the Default Tool of a project icon lets you run a
script (or a command that lacks a Workbench interface) from the icon.
It lets you start the script by opening the icon, as if the script were a
standard Workbench tool.

There are also advantages to starting programs this way for the
advanced user, including scripting preparatory steps (such as loading
special Preferences presets) before launching a program and allowing
the program's task priority to be changed easily. The following
example demonstrates these techniques.

To start an application called OldApp from an ICONX icon,
first loading a special Preferences font preset, and ad ju stin g
the application 's ta sk priority, create this scrip t for the icon:

CD SYS:
Prefs/Font FROM SYS:Prefs/Presets/defscrn.pre USE
CHANGETASKPRI -1
OldApp

Command Examples 8-21

Preventing Displayable Output From Scripts
In scripts, you often want to execute a command without the
command displaying its usual Shell output. This can prevent an
unnecessary series of messages or keep an output window from
opening at an inopportune time.

To prevent all console output, redirect com m and output to a
dum my destination with the >NIL: argum ent:

1> DELETE >NIL: T:Tempfile
The >NIL: argument prevents the printing of the message
T:Tenq>£ile Deleted, or any error messages.

To prevent console output except for error m essages, use the
QUIET option with those com m ands that support it:

1> DELETE T:Tempfile QUIET
The T:Texnpf±le Deleted message is not printed; however, if
T:Tempfile does not exist, the No file to delete message
appears.

Entering and Testing ARexx Macros
To m ake entering and testing ARexx m acros sim pler:

Enter the following AmigaDOS script and save it as S:Edrx:
.KEY mac
ED REXX:<mac>.rexx
PROTECT S:<mac>.rexx + S-E
RX REXX:<mac>

Use this script when experimenting with ARexx macros. Enter E d r x
followed by the name of the macro. Edrx invokes the editor without
you having to type in the .rexx extension and directly calls the ARexx
interpreter RX with your macro as an argument when you exit.

Sorting and Joining Files
If you regularly capture a list of new files each time you log on to a
telecommunications service, you might want to add them to a list of
existing files and sort all the entries by date. Each file name has the

a-22 Command Examples

same prefix and a suffix that reflects the date, such as
NewFiles.921009 for the list of files on October 9, 1992.

To create a single list o f the files, sorted by date, use a pattern
m atching JO IN and SORT:

JOIN NewFiles.#? TO RAM:Temp.joined
SORT RAM:Temp.joined TO NewFiles.sorted
DELETE RAM:Temp.joined

Advanced Tasks
The following examples illustrate advanced tasks for users who are
quite familiar with AmigaDOS.

Testing Software Versions
You might need to control what a script does depending on which
software version a user of the script has. It is easy to test for specific
version numbers from a script.

To test w hether a scrip t is running on an Am iga with R elease
2 level system softw are, preface the version-dependent
portion of the scrip t with a sequence sim ilar to this:

VERSION >NIL: 37
IF WARN

ECHO "It's really time to update your system."
QUIT

ELSE
ECHO "You have Release 2 or better. Good!"
ECHO "Let's continue."

ENDIF
Versions below 37 are pre-Release 2, version 38 is Release 2.1, version
39 is Release 3, and version 40 is Release 3.1.

Flushing Unused Fonts and Libraries
When fonts and libraries are loaded into memory, they remain in
memory even if they are not currently in use. They are removed from
memory automatically only when the memory they occupy is needed

Command Examples 8-23

for some other purpose. In some cases it is useful to remove
unneeded resources yourself.

For example, if you want to edit and then test a font or find the
version number of a library on a new disk, the Amiga may appear not
to see the new font or library. This is because AjnigaDOS uses the
font or library that is in memory whenever possible. You can flush
unused resources from memory and decrease memory fragmentation
by using the AVAIL command's FLUSH option.

To flush an unused font or library from memory w ithout
having to reboot the Amiga, enter:

1> AVAIL FLUSH
For this command to eliminate a font or library, the library or font
must not be in use by the Workbench or some other application.

AmigaDOS Loops Using EVAL
To create a loop in AmigaDOS that can prom pt for the num ber
of tim es to loop:

Enter the following script and save it as ALoop:
.KEY loop
; change bracket characters used for substitution
; since script uses < and > for redirection:
.BRA {
.K ET }
; test whether user provided an argument
; for the number of loops, prompt if not:
IF NOT {loop}

ECHO "Please type in the number of loops"
ECHO "and press Return: " NOLINE
SETENV >NIL: loop{$$} ?

ELSE
; there was an argument, so store its value
ECHO >ENV:Loop{$ $} {loop}

END IF
/
LAB start ; top of loop
ECHO "Loop #" NOLINE ; here, substitute the
TYPE ENV:Loop{$$} ; commands to repeat
EVAL <ENV:Loop{$ $} >NIL: TO=T:Qwe{$$} VALUE2 = 1
OP = - ?
TYPE > ENV:Loop{$ $} T:Qwe{$$}

8-24 Command Examples

IF VAL $loop{$$} GT 0
SKIP start BACK ; loop not finished yet

END IF
DELETE ENV:loop{$$} T:Qwe{$$} QUIET ; clean up
ECHO "Done"

If you invoke this script without providing a number as an argument,
you are asked for input and this value is used as the initial loop
number. If you do provide a number, as in:

1> EXECUTE ALoop 5
the following results are displayed:

Loop #5
Loop #4
Loop #3
Loop #2
Loop #1
Done

The only action inside the loop is to display the current loop count.
However, you can insert more meaningful actions using the Loop{$$)
environment variable.

The first IF block checks whether an argument was given when the
script was invoked. If not, the script prompts for a value. In either
case, the script stores the value in the ENV:Loop{$$) variable file.
The {$$} operator appends the process number to the name Loop to
create a unique file name to avoid potential conflicts while
multitasking. For example, the file name in ENV: might be Loop4.

Within the loop, an ECHO command coupled with a TYPE command
displays Loop # followed by the number given as the loop argument.
The first time through the loop, it displays Loop #5.
The EVAL command takes the number in the ENV:Loop{$$} file as
<valuel>, making the question mark at the end of the line necessary.
<Value2> is 1 and the operation is subtraction. The output of the
EVAL command is sent to the T:Qwe{$$} file. The next TYPE
command sends the value in T:Qwe($$) to the ENV:Loop{$$} file. The
effect of these two lines is to subtract one from the value in
ENV:Loop{$$}.

Command Examples 8-25

The IF statement instructs the script to start over as long as the
value for Loop{$$| is greater than 0. This results in the Loop # line
being printed again showing the new value.

The script continues until Loop($$} is equal to 0. At the end of the
script, the two temporary files are deleted.

Using PIPE:
To get a listing of one device's contents to another process:

From process 1:
1> LIST Work: TO PIPE: ALL

From process 2:
2> TYPE pipe:

To gath er the resu lts of several C com pilations:
1> sc >pipe:ll milk.c
1> sc >pipe:ll snap.c
1> sc >pipe:ll crackle.c
1> sc >pipe:ll pop.c
1> TYPE pipe:11

To use channel nam es:
1> LIST >pipe:crazy

This lists to a pipe called "crazy".
1> COPY #?.c TO >pipe:all_c/32 000

This specifies a channel called "all_c" and a buffer size of 32000 bytes.

To set a lim it on the num ber of buffers to 5:
1> DIR >pipe://5

This creates a channel without a channel name and allows only 5
buffers.

8-26 Command Examples

Recursive AmigaDOS Command Scripts
To create a scrip t that allow s you to apply any AmigaDOS
com m and to the contents of a directory, including all its
su bdirectories and their contents, enter th is scrip t and save it
as S:RPAT:

.KEY COM/A,PATH,OPT,RD
; enter the command for COM, enter the path to the
/directory tree to process for PATH, if it is not
/the current directory, and enter an option for
/the command as OPT. You do not need to enter
/anything for RD.
9.BRA {
.KET }
FAILAT 21 ; do not stop when List finds nothing
f; first scan for files, then generate new script:
LIST >T:trf{$$} "{PATH}" FILES LFORMAT="{COM}
"%p%n" {OPT}"
IF EXISTS T :trf{$$}

; files were found, execute the new script and
; clean up
EXECUTE T :trf{$$}
DELETE T :trf{$$}

ENDIF
//list any subdirectories, call RPAT for each one:
LIST >T:trd{$$}{RD} "{PATH}" DIRS LFORMAT="RPAT
"{COM}" *"%p%n*" *"{OPT}*" RD=.{RD}"
/the RD argument appends periods to the names of
/the temporary script files to distinguish each
/level
IF EXISTS T:trd{$$}{RD}

/ subdirectories exist, execute new script
/ file and clean up
EXECUTE T:trd{$$}{RD}
DELETE T :trd{$$}{RD}

ENDIF
Make sure the RPAT script has its s protection bit set and that RPAT
is in the search path when you run it. Examine the S:SPAT and
S:DPAT scripts that come with your system for examples of similar
techniques.

Appendix A

Error Messages

This appendix lists AmigaDOS errors with their probable causes and
suggestions for recovery. These error messages are the output from
the system when your program fails or if a command is not executed
as the result of a user error. Error messages differ from requesters,
which are messages from the system that allow you to enter specific
corrections, changes, or input so that the program, script, or
command can continue execution. A requester that is not satisfied
produces an error.

Error Message Probable Cause Recovery Suggestion

103 Not enough
memory
available

Not enough memory in
your Amiga to execute
the operation. Memory
may be fragmented.

Close unnecessary
windows and applications
and re-issue the
command. Reboot if this
does not work. You may
need to add more RAM to
your system.

115 Bad number The command requires
a numerical argument.

Use the correct command
format.

116 Required
argument
missing

The command requires
an argument that you
did not supply.

Use the correct command
format.

117 Value after
keyword
missing

Keyword was specified
with no argument.

Use the correct command
format.

A-2 Error Messages

Error Message Probable Cause Recovery Suggestion

118 Wrong
number of
arguments

Too few or too many
arguments.

Use the correct command
format.

119 Unmatched
quotes

You have an odd
number of quotation
marks.

Place double quotation
marks at the beginning
and end of the path or
string.

120 Argument
line invalid
or too long

Your command line is
incorrect or contains
too many arguments.

Use the correct command
format.

121 File is not
executable

You misspelled the
command name or the
file is not a loadable
(program or script) file.

Retype the file name,
ensuring that the file is a
program file. To execute
a script, the s bit must be
set or the EXECUTE
command must be used.

202 Object is in
use

The specified file or
directory is being
edited by another
application or is
assigned.

Stop the application using
the file or directory or
remove the assignment.

203 Object
already
exists

The name specified is
assigned to another file
or directory.

Use another name or
delete the existing file or
directory first.

204 Directory
not found

AmigaDOS cannot find
the specified directory.

Check the directory name
and location (use DIR if
necessary).

205 Object not
found

AmigaDOS cannot find
the specified file or
device.

Check the file name (use
DIR) or the device name
(use INFO).

Error Messages A-3

Error Message Probable Cause Recovery Suggestion

206 Invalid Occurs when Use the correct window
window specifying a window specification.
description size for a Shell, ED, or

ICONX window. The
window may be too big
or too small or you
omitted an argument.
Also occurs with the
NEWSHELL command,
if a device name is
supplied that is not a
window.

209 Packet The device handler Check the request code
request cannot do the passed to device handlers
type requested operation. for the appropriate
unknown For example, the

console handler cannot
rename things.

request.

210 Object There is an invalid Retype the name; do not
name character in the file use any invalid characters
invalid name or the file name or exceed the maximum

is too long. length.

212 Object is You may have Use the correct name and
not of specified a file name command format.
required for an operation that
type requires a directory

name, or vice versa.

A-4 Error Messages

Error Message Probable Cause Recovery Suggestion

213 Disk not
validated

If you have just
inserted a disk, the
disk validation process
may be in progress. It
is also possible that
the disk is corrupt.

Wait for the validation
process to finish. Watch
for drive light to turn off.
Allow a minute for floppy
disks and several minutes
for hard disks. Corrupt
disks cannot be validated.
If corrupted, try retrieving
and copying the files to
another disk.

214 Disk is
write-
protected

The plastic tab is in the
write-protect position or
the disk has been
locked.

Remove the disk, move
the tab, and reinsert the
disk, use a different disk,
or use LOCK OFF
command.

215 Rename
across
devices
attempted

RENAME can move a
file from one directory
to another, but not from
one volume to another.

Use COPY to copy the file
to the destination volume.
Delete it from the source
volume, if desired. Then
use RENAME, if desired.

216 Directory
not empty

You tried to delete a
directory that contains
files or subdirectories.

Use the ALL option of
DELETE if you wish to
delete the directory and
its contents.

217 Too many
levels

Directory nesting is too
deep.

Reorganize directories so
that there are fewer levels
or change directories in
stages to reach the
desired level.

Error Messages A-5

Error Message Probable Cause Recovery Suggestion

218 Device (or
volume) is
not
mounted

If the device is a floppy
disk, it has not been
inserted in a drive. If it
is another type of
device, it has not been
mounted, or the name
is misspelled.

Insert the correct floppy
disk, mount the device,
check the spelling of the
device name, revise your
MountList/mount file, or
assign the device name
appropriately.

219 Seek error An error occurred while
processing a file.

Be sure that you only
SEEK within the file. You
cannot SEEK outside the
bounds of the file.

220 Comment is
too long

Your filenote has
exceeded the
maximum number of
characters (79).

Use a shorter filenote.

221 Disk is full There is not enough
room on the disk to
perform the requested
operation.

Delete unnecessary files
or directories or use a
different disk.

222 Object is
protected
from
deletion

The d (deletable)
protection bit of the file
or directory is clear.

If you are certain that you
want to delete the file or
directory, use PROTECT
to set the d bit or use the
FORCE option of
DELETE.

223 File is write
protected

The w (writable)
protection bit of the file
is clear.

If you are certain that you
want to overwrite the file,
use PROTECT to set the
w bit.

224 File is read
protected

The r (readable)
protection bit of the file
is clear.

Use PROTECT to set the
r bit of the file.

A-6 Error Messages

Error Message Probable Cause Recovery Suggestion

225 Not a valid
DOS disk

The disk in the drive is
not an AmigaDOS disk,
it has not been
formatted, or it is
corrupt.

Be sure you are using the
correct disk. If the disk
worked previously, use a
disk recovery program to
salvage its files. Format
unformatted disks.

226 No disk in
drive

The disk is not inserted
in the specified drive.

Insert the appropriate disk
in the specified drive.

232 No more
entries in
directory

The AmigaDOS call
EXNEXT has no
further entries in the
directory you are
examining.

Stop calling EXNEXT.

233 Object is
soft link

Attempt was made to
access a soft-link for a
device that does not
support it.

No recovery.

235 Bad load
file hunk

The program loaded is
corrupted.

Load a new or original
copy of the program.

241 Record lock
collision

Another application is
accessing the database.

Try accessing the
database again.

242 Record lock
timeout

Another application
has the database entry
locked.

Try again or quit the other
application and retry.

303 Buffer
overflow

Occurs if pattern
matching string is too
long.

Make pattern matching
string shorter.

304 ‘ "Break Occurs if program
stopped via Ctrl+C.

No recovery

305 File not
executable

The e (executable) bit
of the file is clear.

Same as Error 121.

Appendix B

Additional Amiga
Directories

In addition to the AmigaDOS commands, there are other files and
directories on your Workbench disk. This chapter includes the
following:

. DEVS:
• S:
. L:
• FONTS:
. LIBS:
• REXX:
. LOCALE:
• ENVARC:
. ENV:
. CLIPS:
. T:
• Classes
. C:

The drawers contained in DEVS: are described in the Workbench
User's Guide.

You do not need a detailed understanding of the contents of the
directories listed here. Unless specifically directed otherwise, you can
safely ignore them. However, you should know their purposes and
locations in case you inadvertently delete or rename a file in a
directory or need to copy something to the appropriate directory.

B-2 DEVS:

Figure B-l illustrates the standard directory structure of a hard disk
Amiga system. Directories with icons visible from Workbench
(drawers) are shown on the left; other directories are on the right.
The standard contents and structure of these directories may change
as Commodore adds, changes, or removes resources.

SYS: RAM:

Prefs

System

Utilities

Tools

Devs
(DEVS:)

Expansion

WBStartup

Storage

Presets

ENV-Archive
(ENVARC:)

Sys

Trashcan

DOSDrivers

DataTypes

Monitors

Printers
(PRINTERS:)

Keymaps
(KEYMAPS:)

DOSDrivers

DataTypes

Monitors

Printers

Keymaps

C
(C:)

S
(S:, REXX:)

L
(L :)

Libs
(LIBS:)

Fonts
(FONTS:)

- Rexxc

Classes
(LIBS:)

_bullet

_bullet_outlines

Topaz

Courier

Locale
(LOCALE:)

DataTypes

Gadgets

Images

Help
(HELP:)

Catalogs

Languages

Countries

Clipboards
(CLIPS:)

T
(T:)
Env

(ENV:)

Sys

Figure B-1. Hard Disk System Directory Tree

Note On most floppy based systems, the LOCALE:, FONTS:,
and Storage directories are separate volumes.

DEVS: B-3

Most of these directories are automatically assigned to the SYS:
volume or to the Ram Disk. These directories, as well as SYS:, can be
ASSIGNed to different volumes when necessary.

For example, you can assign FONTS: to a particular disk, such as
FontDisk:. Most applications automatically look for the fonts that
they need in the FONTS: directory, regardless of where that is. By
changing the FONTS: assignment, you can allow applications to use
the fonts on FontDisk:

DEVS:
In addition to the DOSDrivers, Keymaps, Printers, Monitors, and
DataTypes drawers described in the Workbench User's Guide, the
DEVS: drawer contains files and subdirectories that pertain to the
devices that can be used with the Amiga.

Note that you can refer to the DEVS:Keymaps and DEVS:Printers
drawers by their assigned names KEYMAPS: and PRINTERS:,
respectively.

Device Files
The following lists the .device files in DEVS: and their functions:

clipboard.device
parallel.device
printer.device
serial.device

mfm.device

Controls access to CLIPS:.
Controls access to the parallel port.
Controls access to the printer device.
Controls access to the serial port.
Controls access to MS-DOS disks with CrossDOS.

For more information on the .device files, see the Amiga ROM Kernel
Reference Manuals published by Addison-Wesley.

B-4 DEVS:

Other Files
The following additional files are found in DEVS:

system- Holds certain Preferences configuration data needed
configuration when booting.
postscriptJnit.ps Holds information needed to initialize a PostScript

printer when using PrinterPS.

Using Mount Files or a MountList
To access new devices, the Amiga must be informed when any are
added. These may be physical devices, such as a tape drive, or
software (logical) devices, such as a recoverable RAM disk. There are
several ways to do this:

• Placing a driver in the Expansion drawer
• Placing a mount file in the DOSDrivers drawer
• Making an entry for the device in a MountList file and using the

MOUNT command

A mount file represents a device, handler, or file system. Standard
devices have their own mount files with icons in the DOSDrivers
drawer in DEVS:. These are mounted automatically during the
standard Startup-sequence. Alternatively, devices can use the
MOUNT command to read a MountList entry that determines the
characteristics of the device.

The need to use a MountList and the MOUNT command has been
eliminated by the mount file method used in Amiga system software
Release 2.1 and beyond. Rather than requiring a MountList file with
entries for each device you want to mount, DEVS: now contains the
DOSDrivers drawer, which holds a separate mount file or DOS driver
for each device. The contents of a mount file are essentially the same
as an individual MountList entry.

You can, however, continue to use a MountList to mount devices.
Copy the MountList to DEVS: and remove any DOS drivers in the
DOSDrivers drawers that have the same name as one of your
MountList entries. (A mount file overrides a MountList entry of the
same name.)

DEVS: B-5

Creating a Mount File or MountList Entry
The following information on mount files also applies to MountLists,
except as noted.

Mount files contain keywords describing the device, handler, or file
system, as well as values for those keywords. Some keywords apply
only to a filesystem or a handler. If a keyword is omitted, a default
value is used. Be sure that the default value is appropriate for the
device.

The following are rules for creating a mount file or MountList:

• The file must be a plain ASCII text file.
• The mount file name must be the name of the device; the name of

a MountList should be MountList.
• Each entry in a MountList must start with the name of the

device. Omit this for a mount file.
• Keywords are followed by an equals sign (=).
• Keywords must be separated by a semicolon or be placed on

separate lines.
• Comments are allowed in standard C style (that is, comments

start with /* and end with */).
• Each MountList entry must end with the # symbol. Omit this for

a mount file.

When creating a new mount file or MountList entry, refer to the
documentation that came with the device or start with an example of
one for a similar device. Change or add only the necessary keywords.

The following table lists keywords and their default values supported
in a mount file or MountList and their functions. Default values are
shown in angle brackets.

B-6 DEVS:

Keyword Function

Handler=<none> A handler entry (for example, Handler = Lqueue-
handler).

EHandler=<none>
Fi leSy stem=<none>

An environment handler entry.
A file system entry (for example, FileSystem =
LCrossDOSFileSystem).

Device=<none> A device entry (for example, Device =
DEVS:mfm.device). This argument is required to
mount a file system. There is no default value for
Device; you must supply a value.

Priority=<10> The priority of the process; 5 is good for handlers, 10
for file systems.

Unit=<0> The unit number of the device (for example, 0 for
PCO:).

Flags=<0>
Surfaces=<none>

Flags for OpenDevice (usually 0).
The number of surfaces (2 for floppy devices, varies
for hard drives). This argument is required to mount
a file system. There is no default value for Surfaces;
you must supply a value.

SectorsPerBlock=
<none>
Sectors PerTrack=
<none>

Defines the number of physical disk sectors in each
logical block used by the file system.
The number of blocks per track. This argument is
required to mount a file system. There is no default
value for SectorsPerTrack; you must supply a value.

SectorSize=<512> Specifies the number of bytes in a block on the
device. Most devices use a 512 byte block;
however, some devices use other sizes (for example,
CD-ROMs use 2048 bytes).

Reserved=<2> The number of blocks reserved for the boot block;
should be 2.

lnterleave=<0> Interleave value; varies with the device.
LowCyl=<none> Starting cylinder to use. This argument is required to

mount a file system. There is no default value for
LowCyl; you must supply a value.

DEVS: B-7

Keyword (cont'd) Function (cont'd)

HlghCyl=<none> Ending cylinder to use. This argument is required to
mount a file system. There is no default value for
HighCyl; you must supply a value.

Stacksize=<600> Amount of stack allocated to the process.
Buffers=<5> Number of initial 512-byte cache buffers. Increase

this for higher disk performance if you have RAM to
spare.

BufMemType=<3> Memory type used for buffers; (0 and 1 = Any, 2 and
3 = Chip, 4 and 5 = Fast).

Mount=<0> See the description of ACTIVATE, which is a
synonym for MOUNT.

MaxTransfer=
<0x7ffffff>

The maximum number of bytes transferred at one
time with any file system. Use MaxTransfer for
compatibility with older hard drive systems.

Mask=<Oxffffffff> Address Mask to specify memory range that DMA
transfers can use at one time with any file system.
Use Mask for compatibility with older hard drive
systems.

GlobVec=<2> A global vector for the process; -1 is no Global
Vector (for C and assembler programs), 0 sets up a
private GV; if the keyword is absent, the shared
Global Vector is used. Omit this keyword for Amiga
file system devices.

Startup=<none> A string passed to the device, handler, or file system
on startup as a BPTR to a BSTR.

Activate=<0> If a positive value, ACTIVATE loads the device or
handler immediately rather than waiting for first
access. Synonymous with MOUNT.

BootPri=<0> A value that sets the boot priority of a bootable and
mountable device. This value can range from -129 to
127. By convention, -129 indicates that the device is
not bootable and is not automatically mounted.

B-8 S: Directory

Keyword (cont'd) Function (cont'd)

DosType=
<0x444F5300>

Baud=<1200>
Control=<0>
Forceload=<0>

Indicates the type of file system, giving hexadecimal
ASCII codes for three letters and a concluding
number as follows:
Value ASCII File System
0x444F5300 DOSO Original (OFS)
0x444F5301 DOS1 FastFileSystem (FFS)
0x444F5302 DOS2 International Mode OFS
0X444F5303 DOS3 International Mode FFS
0x444F5304 DOS4 Directory caching

International Mode OFS

0x444F5305 DOS5 Directory caching
International Mode FFS

0x4D534400 MSDO MS-DOS
Serial device baud rate.
Serial device word length, parity, and stop bits.
Forces a file system to be loaded from disk even
though a suitable entry is in the resource list. If 0
(the default), check the resource list before the disk.
If 1, always load from disk.

S; Directory
The S: directory is generally reserved for AmigaDOS and ARexx
scripts. However, you may place non-script files in S: or place script
files in other directories. In addition to the Startup-sequence file, the
User-startup file that you create, and Shell-startup files, the S:
directory also contains the scripts described in this section.

ED-Startup
This file contains ED commands used to configure the ED text editor,
assigning the default function key options. Key assignments can be
customized by editing this file. Removing or renaming this file

S: Directory B-9

activates expanded ED command menus; see Chapter 4 for
instructions on how to do this.

Other files containing ED commands can be stored in S: for use by the
WITH keyword of ED, which allows ED command files to perform
custom editing operations.

SPat, DPat
These scripts allow pattern matching with commands that do not
normally support it. When run with a command, SPat and DPat use
the LIST command to create temporary script files in the T: directory
and then execute the scripts. SPat and DPat can be used within
command aliases.

SPat adds pattern matching to single-argument commands. For
example, to use ED to edit all the files in the S: directory beginning
with the letter s, enter:

1> SPat ED S :s#?
A script similar to the following is generated:

ED "s :Shell-startup"
ED "s:SPat"
ED "s :Startup-sequence"

SPat executes the script, invoking ED three times to display the files.

DPat adds pattern matching to double-argument commands. After
DPat and the command name, enter the two arguments separated by
a space, using the wildcards required to produce the desired matches.

PCD
Like the CD command, the PCD script changes the current directory.
However, PCD also remembers the directory from which you are
changing, so you can return to it without entering the entire path.
Each Shell has an independent PCD memory.

The first time you use PCD in a given Shell, you must give it the path
to a directory. When entered with this path argument, PCD has the
same effect as CD, changing to the named directory, but it also stores
the path to the directory from which you changed. You can then

B-10 L: Directory

change the current directory by the usual methods. To return to the
initial directory, enter PCD alone. For example:

1.System:> PCD Work:Paint/24bit
1.Work:Paint/24bit> PCD
1.System:>

Subsequent invocations of PCD switch to the directory in which you
last used PCD:

l.System:> PCD
1 .Work:Paint/24bit> /
1.Work:Paint> PCD
1.System:>

PCD uses the assign list to store the remembered directory. When
you use PCD, the list contains the assignment £rom<n>, where <n> is
the Shell number. Using PCD with no argument before establishing
the first from directory produces an error requester.

For further examples of PCD, see Chapter 8.

L: Directory
This directory contains device handlers, which are software modules
that go between AmigaDOS and the devices used by the Amiga.
However, most handlers are treated as if they are actual physical
devices and they are referred to by their device name.

Handlers must be named in the mount file or MountList for their
respective devices. Handlers are called and manipulated by
programs, not users. New handlers can be supplied with some
devices or programs and should be copied to the L: directory.

Aux-Handler
The Aux-Handler provides unbuffered serial input and output. It is
essentially a console handler that uses the serial port rather than the
Amiga screen and keyboard.

The DOSDrivers mount file for AUX is:
Handler = L :Aux-handler
Stacksize = 1000

L: Directory B-11

Priority = 5
You can use Aux-Handler to use a serial terminal with your Amiga.
For example:

1> NEWSHELL AUX:

Queue-Handler (PIPE:)
The Queue-Handler is an input/output mechanism used to provide
I/O communication between programs. It creates an interprocess
communication channel named PIPE. For more information about
PIPE:, see Appendix D.

Port-Handler
The Port-Handler is the AmigaDOS interface for the SER:, PAR:, and
PRT: devices.

When accessing SER:, you can supply settings for the baud rate and
control information. The form for this is SER:<baud/control>, where
baud is a number representing the baud rate and where control is a
three character sequence indicating the following:

Number of read/write bits First character; either 7 or 8
Parity Second character; N (no parity), O (odd

parity), E (even parity), M (mark parity),
S (space parity)

Number of stop bits Third character; either 1 or 2

For example:
SER:9600/8N1

connects to the serial port, sets the baud rate to 9600 with 8 bit data,
no parity, and one stop bit.

If you specify no baud rate or control values when accessing SER:, the
values set in the Serial Preferences editor are used.

CrossDOSFileSystem
The CrossDOSFileSystem is required to use CrossDOS.

B-12 FONTS:

FileSystem_ Trans
The FileSystem_Trans directory contains the following files required
for CrossDOS text translation:

DANSK.crossdos Filters Danish text files
INTL.crossdos Preserves international characters
MAC.crossdos Converts Apple Macintosh ASCII files

CDFileSystem
The CDFileSystem is required to use a CD-ROM drive.

FONTS:
FONTS: is the disk or directory that contains the information for all
of the different styles of fonts available to the Amiga. Font
information is stored differently for bitmap and outline fonts.

Bitmap Fonts
For each bitmap font, there is a subdirectory and a .font file. The font
subdirectory contains files for the different point sizes that are
available. Each of these files contains the bitmap representation of
every character in the font at that point size.

For example, for the Emerald font, there is an Emerald directory and
an Emerald.font file. The Emerald directory contains two files: 17
and 20. The files contain the data needed for the 17 point Emerald
font and the 20 point Emerald font, respectively. The Emerald.font
file contains the list of point sizes and any available styles, such as
bold and italics for the font.

Many word processor or desktop publishing programs contain
additional fonts that you should copy to your FONTS: directory. After
you add new fonts to FONTS:, run the FixFonts program to create the
.font file for the new additions.

UBS: Directory B-13

The Topaz font is the default font used by the Amiga. In addition to
existing in FONTS:, Topaz 8 and Topaz 9 are built into ROM so that
text can always be displayed; however only Topazll is in the Topaz
directory.

Outline Fonts
The Compugraphic Intellifont outline font system used on the Amiga
stores font data differently. As with the bitmap fonts, there is a .font
file for each typeface. There is also a .otag file for each. The two
subdirectories Jbullet and _bullet_outlines contain the actual outline
information for the typefaces installed on your system. You should
not try to manipulate these files directly. Always use the Intellifont
program or your applications' font installation tools to manage outline
fonts.

Note Not all Amiga systems have outline fonts installed.

LIBS: Directory
LIBS: contains libraries of software routines and math functions
commonly used by the operating system and applications. The files
found in the LIBS: directory are:

.library File Function

amigaguide.library Functions used by the AmigaGuide
hypertext system.
File, font, and screen mode requester
functions.

asl.library

bullet.library Library functions for finding and loading
outline fonts.

B-14 UBS: Directory

.library File (cont'd) Function (cont'd)

commodities.library Functions used by Commodities Exchange
programs.

datatypes.library Functions for enabling manipulation of the
file types in DEVS:DataTypes.

diskfont.library Library functions for finding and loading font
files.

iffparse.library
locale.library

Functions to read IFF files.
Functions for using localization features in
the Amiga operating system.

lowlevel.library
mathieeedoubbas.library

Library to aid in game programming.

Double-precision IEEE math routine
functions for basic functions (addition,
subtraction, and so forth).

mathieeedoubtrans.library Double-precision IEEE math routine
functions for transcendental functions (sine,
cosine, and so forth).

mathieeesingtrans.library Fast single-precision IEEE math routine
functions.

mathtrans.library FFP transcendental function math routine
functions.

realtime.library Function to synchronize multimedia events,
such as music and animation.

rexxsupport.library
rexxsyslib.library

version.library

Functions used by ARexx.
Main ARexx functions.
Contains current software version and
revision information.

68040.library Functions needed on Amigas using the
68040 microprocessor chip.

REXX: B-15

REXX:
REXX: is another name normally assigned to the SYS:S directory in
addition to S:. Storing any ARexx programs you write in REXX:
allows you to execute them without entering the full path. Create a
new directory and reASSIGN REXX: to it if you wish to keep ARexx
programs separate from AmigaDOS scripts.

LOCALE:
LOCALE: is where the Amiga looks for language and country files
when it needs to display non-English text. On floppy systems,
LOCALE: is the Locale floppy. On hard disk systems, it is the
SYS:Locale directory.

LOCALE: contains four directories:

Countries

Languages

Catalogs

Help (HELP:)

Contains a .country file for all available countries. These
files hold country-specific information, such as date/time
format and monetary symbols.
Contains .language files for the available languages. These
files hold general language-specific information, such as the
days of the week.
Contains subdirectories for the available languages, each of
which contains a Sys directory. This directory holds
translated text for that language. Catalogs/<language>/Sys
holds menu, gadget, and message text for that language.
Contains subdirectories for the available languages, each of
which contains a Sys directory. This directory holds
translated text for that language. Help/<language>/Sys is
reserved for AmigaGuide text files for any applications that
have AmigaGuide help in that language.

B-16 ENVARC:

ENVARC:
ENVARC: is the name assigned to the directory SYS:Prefs/Env-
Archive. ENVARC: always contains a Sys directory, in which each of
the Preferences editors stores the .prefs file created when you save a
setting with its Save gadget. Custom default icons created in
IconEdit are also saved here. (Named settings saved with the Save
As menu item in an Editor are stored by default in the Prefs/Presets
drawer.)

Other Workbench programs that allow you to save configuration
settings, such as Multi View, also place their files in ENVARC:.

ENV:
ENV: is the directory RAM:Env, into which the contents of ENVARC:
are copied when booting. Preferences settings activated with Save or
Use gadgets are stored in ENV:. Global environment variables are
also stored here, as small files.

CLIPS:
The directory RAM:Clipboards has the assigned name CLIPS:. It
stores information clipped with the Cut or Copy items on a program's
Edit menu.

T:
T: is the RAM:T directory, which may be used by scripts and some
commands for storing miscellaneous temporary files.

Classes B-17

Classes
The Classes directory stores information related to the object-oriented
features of the Workbench, such as the DataTypes system upon which
MultiView is based. Classes contains the directories DataTypes and
Gadgets.

C:
C: is the SYS:C directory, which stores non-internal AmigaDOS
commands. It is always in the search path.

Appendix C

Using Floppy-Only Systems

The limitations of working with floppy disk systems and how to swap
disks are described in the Workbench User's Guide. This appendix
explains how to use AmigaDOS to minimize disk swapping and
maximize your available work space with the following:

• Making commands resident
• Preloading resources into memory
• Assigning a path
• Removing files from your Workbench disk
• Using the Ram Disk
• Using RAD:

Making Commands Resident
If you have a floppy-based system, we recommend that you make
frequently-used commands resident for quick access. Resident
commands, which reside in the Amiga's memory, do not require the
insertion of the Workbench disk each time the command is used. Use
the RESIDENT command to copy a command into the Amiga's
memory.

Since resident commands use RAM space, the number of commands
you can make resident depends on the amount of RAM in your
system. Before making a command resident, use the LIST command
to get an approximation of the memory it uses. For example, entering
LIST C :COPY produces output similar to this:

Directory "Sys:C" on Monday 15-Jun-92
copy 5496 --p-rwed 03-Jun-92 17:22:02

C-2 Preloading Resources

The size of the file is shown to the right of the file name. The COPY
command uses approximately 5.5 KB of RAM if made resident.

To conserve as much memory as possible for your applications, make
resident only the AmigaDOS commands and programs that are
frequently used and are not built into Workbench. These include
ASSIGN, ED, STATUS, Format, and DiskCopy. If you have sufficient
memory and you regularly use AmigaDOS, you can also make
resident commands that have Workbench equivalents, such as COPY,
DELETE, DIR, LIST, MAKEDIR, and RENAME.

Do not make resident commands that are not used often, such as the
startup command ADDBUFFERS. The following commands cannot
be made resident: BINDDRIVERS, CONCLIP, IPREFS,
LOADRESOURCE, LOADWB, and SETPATCH.

For more information on making commands resident, see the
RESIDENT command in Chapter 6.

Preloading Resources
Preloading resources into free memory makes them available without
inserting the floppy disk each time they are needed. Using the
LOADRESOURCE command, you can preload libraries, devices,
fonts, and catalogs into RAM. These resources remain in RAM as
long as they are in use or until the system flushes them due to low
memory. Resources other than devices can be locked into RAM,
forcing them to stay there until you unlock them.

For more information on the LOADRESOURCE command, see
Chapter 6.

Using ASSIGN'S PATH Option
Using the PATH option of the ASSIGN command reduces disk swaps
by directing AmigaDOS to search any disk in a given drive for the
command it requires. Normally AmigaDOS displays a requester
asking for the original boot disk even when the currently inserted
disk contains the necessary file.

Removing Files From Your Workbench Disk C-3

Add the following commands to your User-startup script to use the
PATH option:

ASSIGN DEVS: DF0:Devs PATH
ASSIGN C: DFO:C PATH
ASSIGN L: DFO:L PATH
ASSIGN FONTS: DFO:Fonts PATH

Then copy these directories from the Workbench disk onto application
disks that require them.

For more information on the PATH option of the ASSIGN command,
see the ASSIGN command in Chapter 6.

Removing Files From Your
Workbench Disk

Copying printer drivers, fonts, or Preferences editors to your
Workbench disk makes them readily available. However, a Volume
is full requester can result if you try to copy too much to your
Workbench disk. It is possible to delete files from the Workbench
disk to make room for other files.

Note When working directly with your Workbench disk, use
a backup copy of the original disk that came with your
system. Your original, unchanged Workbench disk
should never be altered in case you need to restore a
file or reinstall the Workbench.

Deleting system software results in some limitation of your Amiga's
capabilities and may cause an error if an application attempts to use
a file that was deleted. If you experience an unexpected requester or
error, repeat the same operation using the original Workbench disk.
If no error occurs, the application uses something that was deleted
and it should be restored.

Document all changes that you make to your system disks. Adding a
comment in the disk's User-startup file can remind you that you are
working with a non-standard Workbench disk.

C-4 Removing Files From Your Workbench Disk

Files You Can Delete
• Delete files from your Workbench disk starting with the least

critical files, such as the Clock program, and programs that do not
apply to your system, such as CiMAGTAPE if you do not use a
tape drive and System/NoFastMem if you do not have any Fast
("other") memory.

• Delete the AmigaDOS text editor C:EDIT to free approximately
18 KB of disk space.

• Delete L:CrossDOSFileSystem and DEVS:mfm.device if you do
not need to use CrossDOS, freeing approximately 32 KB.

• Delete with caution the contents of the Classes directory to save
about 115 KB; however, this contains subdirectories that other
programs use. The Classes/DataTypes directory, for example, is
used by MultiView and should not be deleted if you wish to use
that program to view files. The Classes/Gadgets directory is used
by the Palette Preferences editor and should not be deleted if you
wish to change your color settings.

Files To Avoid Deleting
The following should not be deleted under any circumstances:

• Any directory normally found on the Workbench disk; delete only
the files within directories

• DEVS:parallel.device
• DEV S : printer .device
• DEVS.serial.device
• LIBS :asl.library
• LIBS:commodities.library
• LIBSrdiskfont.library
• LIBSiiffparse.library
• LIBS:locale.library (if your language and country are not English

and united_states)
• LIBS:68040.library (if you have a Commodore 68040 board)

Using the Ram Disk C-5

• SrStartup-sequence
• L:Port-handler
• Any non-Intemal command that appears in the default Startup-

sequence

Do not delete any file whose purpose you do not know. Do not delete
more files than necessary to fit the new material you intend to add to
the disk.

Although deleting everything in REXXC, in addition to
System/RexxMast, System/RexxMast.info, LIBSirexxsyslib.library,
and LIBS:rexxsupport.library frees almost 50 KB of disk space, we do
not recommend this since many Amiga applications use ARexx and
must call upon these files.

Using the Ram Disk
RAM: or Ram Disk, which is represented on the Workbench screen by
the Ram Disk icon, is an area of the Amiga's internal memory that is
set up as a file storage device. Files, directories, and—available
memory permitting—entire floppy disks can be copied to RAM: for
temporary storage.

The size of RAM: is dynamic. It is never any larger than necessary to
hold its contents. Therefore, it is always 100% full. Its maximum size
is limited by the amount of free memory.

The primary advantage of RAM: is speed. Since it is electronic,
rather than mechanical, storage and retrieval are almost
instantaneous. The disadvantage of RAM: is that data stored in
RAM: does not survive when the computer is turned off or rebooted.

Applications commonly use RAM: for the storage of temporary files
created during the use of the program or backup files created when
the program is exited. RAM: can also be used for the storage of
experimental script files, as a destination for testing command
output, and whenever the creation of a file on an actual disk is too
slow, risky, or inconvenient.

C-6 Using the Ram Disk

Copying From One Disk to Another
The most efficient way to copy information from one disk to another
on a single-floppy system is to use the Ram Disk:

1. Copy the information from the source floppy disk to the Ram
Disk.

2. Remove the source floppy disk from the drive.

3. Insert the destination disk.

4. Copy the information to it from the Ram Disk.

Be careful when using RAM: for storing important files. If the Amiga
loses power, has a software failure, or you reboot, everything stored in
RAM: is lost. Be sure when working with RAM: to regularly back up
any important files on a floppy disk.

Note You cannot copy a disk to RAM: by dragging the source
disk icon over the Ram Disk icon. To copy a disk to
RAM:, open the Ram Disk icon and drag the floppy disk
icon into the Ram Disk window to create a drawer with
the name and contents of the floppy disk.

Recoverable Ram Disk
AmigaDOS also provides a recoverable Ram Disk, which has the
device name RAD:. The contents of RAD: survive reboots and most
software failures, making it a safer place for work files. (Data in
RAD: is still lost if the computer is turned off.)

RAD: is not automatically created. To activate a recoverable RAM
Disk, double-click on the RAD icon in the DOSDrivers drawer of the
Storage directory. To start RAD: whenever you boot, copy the RAD
icon to the Devs/DOSDrivers drawer on the Workbench disk. When
RAD: has been activated, a disk icon labelled RAM_0 appears on the
Workbench screen.

Unlike RAM:, the size of RAD: is fixed. The size is set in the RAD:
mount file's HighCyl parameter. Change its size by entering a

Using the Ram Disk C-7

different value for HighCyl. A HighCyl entry of 79 results in a RAD:
with the same capacity as a normal 880 KB floppy disk.

Bootable RAD:
On an Amiga with more than 2 MB of RAM, you can create a
floppy-size RAD:; the default as configured by the MountList is
floppy-sized. By copying your Workbench files into this RAD: and
reassigning to it all the directories normally assigned to the
Workbench disk, it can be used as a recoverable Workbench-in-RAM.
This allows you to reboot from RAD: instead of from the Workbench
disk.

You can also set up multiple RAD: devices of different sizes by
copying the RAD: mount file and changing the name and unit
number.

Appendix D

Advanced AmigaDOS
Features

The information in this appendix is intended for experienced
AmigaDOS users. It includes the following:

• Customizing the window
• Customizing your Shell environment
• Using Escape sequences
• Customizing startup files

Customizing the Window
The Shell supports a WINDOW Tool Type in the Shell icon that
allows you to specify the size, position, and features of the Shell
window. The format of the Tool Type is as follows:

WINDOW=CON:x/y/width/height/title/option/options
For a description of the options and arguments for the Shell window
specification, see the description of the NEWSHELL command in
Chapter 6 and the examples in Chapter 8.

Public Screens - PUBSCREEN Option
Applications creating screens can mark them as public, enabling
other applications and utilities to open windows on the same screen.
AmigaDOS commands that have PUBSCREEN/K in their templates
allow the commands to open windows on public screens.

D-2 Advanced AmigaDOS Features

For example, the Input Preferences editor template contains
PUBSCREEN/K; open this editor on a public screen by entering the
following:

1> INPUT PUBSCREEN "public screen name"
You must supply the name of the public screen. The internal names
for public screens are given by applications and do not necessarily
match the screen title printed in the screen's title bar. A screen's
name can be the same as the application's name; however, consult the
application's documentation to determine if it opens public screens
and how it names them.

Customizing the Sheil
You can customize your Shell environment by changing the S:Shell-
startup file, which is a script that is executed each time a new Shell is
opened. You can edit Shell-startup to set up command aliases and to
change the Shell prompt.

Using Aliases
An alias is an abbreviation for a long and/or frequently used
command. Aliases can be local or global . Local aliases are entered
in a Shell window and are only recognized in that Shell. Global
aliases are entered into the Shell-startup file and are recognized by
all Shells.

The Alias format is as follows:
ALIAS <name> <string>

where <name> is the alias name to be entered at the Shell prompt to
execute a command. The <string> is the command line to be
executed.

See Chapter 6 for a full description of the ALIAS command and
Chapter 8 for a list of useful aliases.

Advanced AmigaDOS Features D-3

Changing the Prompt
The PROMPT command lets you customize the Shell prompt. By
default, it shows the process number, a period, the current directory,
a right angle bracket (>), and a space:

1.Workbench:>
The prompt cam display almost anything, with or without the process
number and directory information. The return code of the last
command executed can be included. The prompt cam contain escape
sequences, allowing you to change text color and style in the prompt
string or clear the screen.

Benefits of customizing your Shell prompt include making the
prompt:

• Easier to distinguish from commands and their output
• Match a prompt style with which you are familiar
• More informative
• Shorter

See Chapter 8 for examples of how to use escape sequences to make
the prompt more readable.

Using Escape Sequences
Escape sequences can control how the text appears in a console
window, such as the text color, style (bold, italics, underline), and
margins. AmigaDOS recognizes standard ANSI X3.64 sequences
entered on the command line or embedded in strings. Escape
sequences consist of one or more characters, sometimes with a
numerical argument, prefaced by the escape character. Spaces are
not normally used in the sequence of characters.

D-4 Advanced AmigaDOS Features

The escape sequence is shown using the following format:
Esc[#X

where:

Esc Represents the Escape key. Press Esc or substitute *E if you
are in an application such as ED that uses the Esc key for its
own purposes. When you press Esc, a reversed-color open
bracket ([) appears in the console window.

[Represents the open bracket key, displayed in Figure D-1. If
your country's keyboard does not have an open bracket key,
press Alt plus the key shown, regardless of what is shown on
the keycap.

Press this key for ;g ;;; -jg-
open bracket

Alt key

F ig u r e D -1 . O p e n B r a c k e t K e y L o c a t io n

Represents a numerical argument.
X Represents an alphabetic key. Escape codes are case-

sensitive. If an upper case letter is shown, press Shift and the
key. If a lower case letter is shown, press the unshifted key.

The standard escape sequences for console windows are:

Sequence Action

Escc Clears the window and resets all modes to defaults.
Esc[0m Resets graphics modes to defaults.
Esc[1 m Turns on text boldface.
Esc[3m Turns on text italic.

Advanced AmigaDOS Features D-5

Sequence Action
(cont'd) (cont'd)

Esc[4m Turns on text underlining.
Esc[7m Turns on reverse video text.
Esc[8m Makes text match background color.
Esc[22m Turns off boldface.
Esc[23m Turns off italics.
Esc[24m Turns off underlining.
Esc[27m Turns off reverse video.
Esc[28m Returns the text color to normal.

Esc[30m Turns on text colorO (background, default grey).
Esc[31m Turns on text colorl (shadow, default black).
Esc[32m Turns on text color2 (shine, default white).
Esc[33m Turns on text color3 (accent, default blue).
Esc[3#m Turns on text color# (4-7).
Esc[39m Turns on text default color (colorl).
Esc[40m Turns on text background colorO (default grey).
Esc[41m Turns on text background colorl (default black).
Esc[42m Turns on text background color2 (default white).
Esc[43m Turns on text background color3 (default blue).
Esc[4#m Turns on text background color# (4-7).
Esc[49m Turns on default text background color (colorO).
Esc[#u Sets maximum length of lines in window to #.
Esc[#t Sets maximum number of lines in window to #.
Esc[#x Starts text # pixels from left edge of window.
Esc[#y Starts text # pixels from top edge of window.

The escape sequence is executed when you press Return or when the
string containing the sequence is printed.

D-6 Advanced AmigaDOS Features

Certain characters cannot normally be used in string arguments for
AmigaDOS commands. Preceding these characters with an asterisk
allows them to be used in string arguments for most commands, as
follows:

*E
*N
* n

** Gives a single asterisk.

Represents the Escape key in a string.
Forces a new line in the output.
Allows a quotation mark character inside quotation marks.

Customizing Startup Files
Each time your Amiga is booted, it executes the Startup-sequence
script file Startup-sequence script file located in the S: directory. The
Startup-sequence file allocates disk buffers, makes device
assignments, reads saved Preferences settings, and performs other
functions that configure the Amiga for use.

Because any errors introduced into the Startup-sequence file can
cause a fatal disruption of the normal system startup, we strongly
recommend that you do not alter your Startup-sequence file. Instead,
we recommend that you create a file called User-startup User-startup
filein the S: directory. Creating a User-startup file allows you to
customize your system at startup while preventing any disruption of
the normal booting process. This file is automatically executed by the
Startup-sequence before opening Workbench.

Note Do not modify the original Startup-sequence file.
Altering your Startup-sequence file can cause fatal
system startup errors.

The User-startup and other startup files in the S: directory can be
modified to run programs at startup, print special introductory
messages, or automatically open a Shell window on the Workbench
screen. Any AmigaDOS command can appear in a startup script,
including commands to execute other scripts.

Refer to Chapters 6 and 7 for complete specifications about each
command before making changes to any existing script.

Advanced AmigaDOS Features D~7

Editing Startup Files
If you have a floppy-only system, make changes to your startup files
only if you are working on a copy of your Workbench disk, not the
original. If you make a mistake in your startup files and the
execution of the Startup-sequence is aborted, only a Shell prompt
remains. Normally, the FAILAT 21 command ensures that the
Startup-sequence completes execution even after an error.

As long as you do not alter your standard Startup-sequence file, the
possibility of a serious startup error is unlikely. If you attempt to
boot from a disk that has no file named S:Startup-sequence or there is
serious error in the startup process, you may see a screen similar to
that shown in Figure D-2.

Figure D-2. AmigaDOS Boot Failure Shell Window

This is a Shell window at which you cam enter commands, but from
which your usual aliases and search path may not be available. This
Shell allows you to try to edit the startup file that caused the
problem. Because the system has not been fully configured, this can
be difficult. It is usually easier to reboot using a different disk.

D-0 Advanced AmigaDOS Features

When editing your User-startup file:

• Be sure to use the correct command syntax. Test any commands
you plan to insert into the User-startup in a Shell window first. If
a command works properly in the Shell, it should work as
expected in the User-startup.

• Pay attention to the order of commands commands:order of
commands in script in the script. Some commands, such
ECHOcommands:ECHO and RESIDENT, can be put anywhere.
However, when inserting commands that refer to directories and
files, an error can result if you reference anything that has not yet
been created, assigned, or given a valid path.

• Specify the complete path to directories that you wish to access.
• Add comments to your scripts. If you insert a semicolon at the

end of a command line, anything to the right of the semicolon is
ignored by AmigaDOS, but appears in the script as a comment.
For example:
ASSIGN T: RAM:T ; set up directory for scripts
explains why you inserted the command.

• Test changes to your User-startup file. When experimenting with
your User-startup file, reboot your Amiga after each change to
test the result. However, be sure to wait until you are sure the
file is completely written to disk before the reboot to avoid
potential data loss.

Common Additions to the Startup Files
The following is a list of some of the most common additions that can
be made to your startup files.

• Opening a Shell window
• Adding directories to the search path
• Adding logical device names to the assign list
• Making additional commands resident
• Starting input commodities and other programs
• Adding drive cache buffers

Advanced AmigaDOS Features D-9

Using PIPE:
The PIPE: device transfers data from one program to another using
temporary storage in RAM. Use a pipe: when you wish to apply
output from one process as input to another process. Using a pipe to
transfer data reduces the possibility of running out of memory when
working with very large files and eliminates the need to create, save,
and later delete a file needed only once.

The source and destination processes cannot be the same when using
PIPE:. As you write information to the pipe, another process can read
the data in First In First Out (FIFO) order. Providing a name after
PIPE: gives the pipe a name.

Data sent to PIPE: is buffered in memory. When another application
reads the pipe it gets the data in the order it came in. The pipe stays
in RAM until its contents are emptied by the reading processes or
until the next reboot.

PIPE: uses at least a 4 KB buffer per pipe-name. When the
maximum buffer capacity is reached, PIPE: stops accepting data until
another process reads data out of the buffer. If a process is reading
data, it waits until more data arrives in the buffer. Buffer size can
only be specified on the first reference to a particular channel.

The following are the options for PIPE:PIPE:options

channeLname A unique channel name. Must begin with a non-numeric
character. The channeLname is optional; using PIPE:
alone is possible if not using multiple pipes.

buf_size Size in bytes of the buffer to allocate. (The default size
is 4 KB.) The buf_size is optional.

max.buffers Maximum number of buffers allowed. Suspends the
output channel if exceeded. Max_buffers = 0 indicates
there should be no fixed limit on the number of buffers
allocated.

PIPE: can be used from other programs, such as word processors or
terminal programs. You can use any pipe-name. If the application
reads the file sequentially, you can specify PIPE:<name> and it
appears the same as an ordinary file to the application.

Information from one pipe can be copied to another. For example:

D-10 Advanced AmigaDOS Features

Shell window 1: COPY Hugefile PIPE:a
Shell window 2: COPY PIPE:a PIPE:b
Shell window 3: COPY PIPE:b PIPE:c
Shell window 4: COPY PIPE:c PIPE:d
Shell window 5: COPY PIPE.d PIPE:e
Shell window 6: TYPE PIPE:e ;Hugefile is TYPEd

The DOSDrivers mount file for PIPE: mount files:for PIPE:is as
follows:

Handler = L:Queue Handler
Priority = 5
StackSize = 3000
GlobVec = -1

PIPE: is mounted by default during the standard Startup-sequence.

See Chapter 8 for additional PIPE: examples.

Glossary

absolute path
A path that gives the full information for locating a file, including
the volume or device name, any subdirectories, and the file name.

a lia se s
Alternative names for AmigaDOS commands. An alias can be
used to abbreviate frequently used commands or replace standard
command names with different names.

archive
A backup copy of one or more files or a whole volume.

argum ent
A filename, option, or other kind of information passed along with
the command name on a command line. Also known as a
parameter.

assign
To identify a path to a directory or file under an additional name.
This defines logical devices used by the operating system, such as
C: where AmigaDOS stores command files, or S: where scripts are
stored.

background process
A process that does not open its own window for input or output
and does not take over the parent Shell.

block
1. A contiguous series of bytes on a storage device (a disk block
normally equals 512 bytes)

2. A contiguous part of a script/program file; for example, an IF-
ENDIF block.

Glossary-2

boot block
An area on a disk or PCMCIA card that contains boot code for the
system to read when booting. The presence of a valid boot block
on a disk or card makes it bootable.

B ridgeboard
A special hardware expansion board made by Commodore that
makes your Amiga PC-compatible.

buffer
An area in RAM used for temporary data storage for disk or serial
input/output or by some other operations.

cache memory
A storage area consisting of very fast RAM chips. It serves as a
buffer between a fast CPU chip and a slower system memory.
Built into systems with bigger processors.

Chip RAM
The part of the system RAM that the Amiga custom chips can
access. All video and sound data is stored here.

circu lar link
A link that refers to a link that refers back to it.

C lipboard
An area in memory used to hold data in cut and paste operations.

com m and history
A list containing the most recently issued command lines. These
command lines can be recalled, edited, and reissued.

com m and line interface (CLI)
See Shell.

comment
1. A line or part of a line that is not executed, but is included to

document the operation of a program or script for future
reference.

2. A short descriptive note that can be attached to any file using
the FILENOTE command.

condition flag
A variable that indicates the condition on which a command ends.

Glossary-3

console windows
Windows used by the Shell for text-oriented data input and
output.

current directory
A Shell's current location in the directory structure, used as the
default directory in which commands operate.

current window
The highlighted window that accepts input from the keyboard. A
Shell window is current when it is opened.

cursor
The small rectangular highlighted box that indicates the position
in the current file at which the next character will appear.

d ata cache
Hardware feature present on 68030 and 68040 microprocessors
that substantially speeds memory access.

delim iter characters
Characters that define the beginning and ending of an argument
string. For example, in the ED text editor,", /, \, !, :, +, and % are
valid delimiters.

detach
To separate a program from the process in which it was invoked
so that the process' Shell window can close before the program is
finished.

device drivers
Files that provide functions needed for a device to function
properly on the system.

directory caching
A file system option used to increase directory listing speed.

directory link
See Link.

disk operating system
A part of the operating system that is devoted to managing disks
and files.

Glossary-4

endless loop
See endless loop.

escape sequence
A string of control characters, normally introduced by the Escape
character. You can control the window format and font style with
escape sequences.

extended com m ands
In the ED text editor, commands consisting of one or two
characters that can be grouped together, introduced by the Esc
key.

extension
A sequence of characters beginning with a period, such as .info,
added to the end of a filename to identify the type of file.

fail lim it
The limit at which a return code value terminates a sequence of
non-interactive commands.

F ast RAM
Part of the system RAM to which custom chips do not have access.
Since only the CPU and some peripheral devices have access to
Fast RAM, it is considerably faster to use.

fence ch aracters
Used in MEmacs to find the beginning and end of a program nest
structure. Fence characters can be parentheses, brackets, braces,
or angle brackets.

f ie ld
1. An on screen area in which a variable value is displayed or

entered.

2. The screen area behind the text of a Workbench icon label.
The color of the field can be changed with the Font editor.

Glossary-5

file system
A part of the operating system that defines how information is
stored on storage devices. This includes file headers, data sectors,
subdirectory headers, and bitmaps that indicate which sectors on
a disk are already occupied and which are free.

global vector (GlobeVec)
A mount parameter needed by some devices.

hexadecim al
The base 16 numbering system.

hierarch ical file system
A file system that allows directories to contain other directories,
as well as files.

im m ediate com m ands
Commands in the ED text editor that are executed as soon as you
press the associated key combination.

instruction cache
A type of memory in the 68020, 68030, and 68040 microprocessors
that allows instructions to execute more quickly.

in teractive listing mode
A mode of the DIR command that stops after each name in a
directory listing to display a question mark at which commands
controlling the listing can be entered.

internal com m ands
Commands that are built into the Shell. These do not need to be
loaded from disk to use.

in terprocess com m unication (IPC)
The mechanism by which two programs pass data to and from
each other.

line windows
Subsections of the line on which the EDIT line editor executes all
subsequent commands.

Glossary-6

link
A file or directory that is a pointer to another file or directory on a
disk. When an application or command calls the initial file or
directory the linked file or directory is used. (Also called a hard
link.)

logical device
An assigned directory or software device that is referred to by a
device, but points to a directory or device handler.

M ountList
A text file in the DEVS: directory that contains information about
connected or logically defined devices. The MOUNT command
uses this information to activate devices.

m ultitasking
The ability to run more than one program simultaneously. For
example, on the Amiga you can start several programs from a
single Shell window using the RUN command.

nesting
Multiple levels of IF statements within scripts or programs or
multiple levels of subdirectories within directories.

non-detached program s
Commands that occupy the Shell while processing, preventing the
Shell's use or closure until completion.

octal
The base 8 numbering system.

operating system
Underlying software that controls the computer's functions.

path
Information that provides the system with the location of a
particular file. This can include a volume or drive name and
subdirectory names. See also search path.

pattern m atching
A way of searching files and directories that match a specified
pattern; this can be done with wildcard characters.

Glossary-7

PCMCIA
Personal Computer Memory Card International Association, an
organization that establishes standards for memory card slot
devices.

pipe
An Interprocess Communication (IPC) mechanism for sending the
output of one command as input to another.

p rocess
An Amiga operating system task that can communicate with
AmigaDOS to access files. Each process is identified with a
number that can be displayed using the STATUS command.

prom pt
A special customizable text string that always appears at the
start of a Shell window line to indicate that the system is ready to
receive another command line.

protection b its
Attributes that indicate a file's type and the operations permitted
on it. Use the LIST command to display the protection bits
associated with a file.

pure
Describes a command or program that can be made resident. If a
file is pure, the p protection bit is set.

redirection
The process of sending command input or output to a destination
other than the Shell; for example, to a file.

re-entrant com m ands
Commands that support independent use by two or more
programs simultaneously.

re-executable com m ands
Commands that do not have to be reloaded to be executed more
than once.

resident
Commands stored in memory so that they do not have to be
reloaded each time they are used. These commands should be
pure.

Glossary-8

return code
A number returned to the Shell from a command at completion to
indicate its success or failure.

root
The main directory of a disk, containing all its files and/or
subdirectories.

SC SI (Sm all Com puter System Interface)
An interface standard for connecting peripheral devices to a
computer system. (This is pronounced "scuzzy.")

search path
A series of directories in which AmigaDOS looks for commands
that are entered without paths. The default search path includes
the C: directory, the current directory, and several other
directories specified in the standard Startup-sequence.

sector
The smallest storage unit on a disk, usually 512 bytes.

Shell
A text-oriented user interface in which you type in command lines
and receive output in a special Shell or console window. Also
called CLI (Command Line Interface).

soft link
A file or directory link that can span multiple devices or volumes.
This is not currently supported on the Amiga.

spaw n window
An AmigaDOS Shell window opened from MEmacs using the
MEmacs New-Cli command. AmigaDOS commands entered into
the spawn window do not interfere with MEmacs.

stack
An area of the computer's memory that is set aside by a program
for intermediate storage. Allocating insufficient stack space can
cause program failure.

Startup-sequence
A special script file that is automatically executed when the
Amiga is booted.

Glossary-9

string
A series of text characters treated as a unit, such as a message
printed by ECHO. A string usually requires delimiter characters,
such as spaces or quotation marks, to mark its beginning and end.

tem plate
A string that defines a Shell command's arguments and argument
types.

tim estam p
The date and time associated with a file. This reflects when the
file was created or the date and time that changes to the file were
last saved.

U ser-startup
A special script file that you create to customize your system's
startup. If a User-startup file exists, it is automatically executed
by the Startup-sequence.

w ildcard characters
Characters with special meaning when used in file name
specifications. These characters are used in pattern matching
operations.

Index

.BRA, 5-7, 5-8

.DEF, 5-7, 5-9

.DOLLAR, 5-7, 5-10

.DOLLAR keyword, 5-5

.DOT, 5-7

.info files, 3-5

.KET, 5-7, 5-8

.KEY, 5-7
arguments, 5-8
description, 5-7
position in file, 5-7

6
68040.library, B-14

A
ADDBUFFERS, 6-10
ADDDATATYPES, 6-92
adding cache buffers, 6-
advanced features, D-1
ALIAS, 6-11
aliases, 6-11,8-13, D-2

creating global alias, 6-11
displaying, 6-11
entering, 6-11
global, D-2
local, D-2
removing, 6-11, 6-87
setting, 6-11

AmigaDOS commands, 6-1
ADDBUFFERS, 6-10
ADDDATATYPES, 6-92
ALIAS, 6-11
alphabetic listing, 6-1
alternative names, 6-11
arguments, 3-12
ASK, 6-12
ASSIGN, 6-13
AVAIL, 6-17
BINDDRIVERS, 6-92
BREAK, 6-18
CD, 3-11,6-19
CHANGETASKPRI, 6-21
command line, 3-13
command line length, 3-13
command name, 3-12
CONCLIP, 6-93
COPY, 3-11, 6-22
CPU, 6-24
DATE, 3-11,6-26
DELETE, 3-11,6-28
DIR, 3-11, 6-29
disk-based, 3-11
DISKCHANGE, 6-32
DISKCOPY, 3-11

Index-2

ECHO, 6-32
ED, 6-33
EDIT, 6-34
ELSE, 6-34
ENDCLI, 6-35
ENDIF, 6-35
ENDSHELL, 3-11,6-36
ENDSKIP, 6-36
entering, 2-3

similar commands, 2-6
EVAL, 6-37
EXECUTE, 6-38
executing from within a string,
5-4
FAILAT, 6-39
FAULT, 6-40
FILENOTE, 6-41
FORMAT, 3-11
general information, 3-12
GET, 6-42
GETENV, 6-43
how to read, 6-5

angle brackets, 6-6
braces, 6-6
ellipsis, 6-7
indentation, 6-7
italics, 6-6
numeric value, 6-6
square brackets, 6-6
template, 6-8
vertical bar, 6-6

ICONX, 6-43
IF, 6-45
INFO, 3-11,6-46
INSTALL, 6-47
internal, 3-11
IPREFS, 6-93
JOIN, 6-48
keywords, 3-7
LAB, 6-49
LIST, 3-12,6-49
list of basic commands, 3-11
LOADRESOURCE, 6-52
LOADWB, 6-53

LOCK, 6-54
MAGTAPE, 6-55
MAKEDIR, 3-12, 6-56
MAKELINK, 6-57
making resident, C-1
MOUNT, 6-57
NEWCLI, 6-59
NEWSHELL, 3-12, 6-59
PATH, 6-62
PROMPT, 6-64
PROTECT, 6-65
QUIT, 6-66
RELABEL, 3-12, 6-67
REMRAD, 6-68
RENAME, 3-12, 6-68
repeating, 2-6
REQUESTCHOICE, 6-69
REQUESTFILE, 6-70
RESIDENT, 6-72
RUN, 3-21,6-74
SEARCH, 6-76
SET, 6-77
SETCLOCK, 3-12, 6-78
SETDATE, 6-79
SETENV, 6-79
SETFONT, 6-80
SETKEYBOARD, 6-81
SETPATCH, 6-94
SKIP, 6-82
SORT, 6-84
STACK, 6-85
STATUS, 6-85
storage, 3-8
template

displaying, 3-16
entering arguments, 3-16

testing, 8-16
TYPE, 3-12, 6-86
types of, 3-11
UNALIAS, 6-87
UNSET, 6-87
UNSETENV, 6-88
VERSION, 6-88
WAIT, 6-89

Index-3

WHICH, 6-90
WHY, 6-91
Workbench-related, 7-1

alphabetic listing, 7-1
AmigaDOS examples, 8-1
AmigaDOS file system, 3-1

elements, 3-2
amigaguide.library, B-13
angle brackets, 3-18

using in script files, 5-8
ARexx

Stem Variables, 4-24
support within ED, 4-24

arguments, 3-12
argument passing, 3-21
description, 3-13
enclosing in quotation marks, 3-
15
keywords, 3-13

ASK, 5-6, 6-12
asl.library, B-13
ASSIGN, 6-13, C-2

dismounting volumes/devices,
6-15
late binding, 6-14
non-binding, 6-15
removing target names from list,
6-14
using PATH option, C-2

assignments, 6-13, 8-9
creating, 8-9
listing, 6-14
multiple-directory assignments,
6-16

asterisk, 3-19
AUTOPOINT, 7-13
Aux-Handler, B-10
AVAIL, 6-17

B
background processes, 6-74

running, 6-74
baud rates, setting, B-11
BINDDRIVERS, 6-92
bitmap fonts, B-12
BLANKER, 7-14
Boolean expressions

evaluating, 6-37
boot block, 6-47

checking for valid boot code, 6-
47
removing, 6-47
writing or inspecting, 6-47

BREAK, 6-18
buffer allocation, 6-10

recommended number, 6-10
subtracting buffers, 6-10

bullet.library, B-13
burst mode, 6-25

C
C:, B-17
CALCULATOR, 7-18
CD, 3-11, 6-19
CDFileSystem, B-12
CHANGETASKPRI, 6-21
changing search path, 8-4
changing the mouse pointer, 7-8
changing Workbench screen colors,
7-7
Chip memory, 6-17
choosing languages, 7-6
Classes, B-17

directories
DataTypes, B-17
Gadgets, B-17

CLICKTOFRONT, 7-15
Clipboard, 6-93
CLIPS:, B-16
CLOCK, 7-19

options, 7-19
closing the Shell, 2-3

Index-4

methods, 2-3
CMD, 7-20

options, 7-21
command conventions

Examples, 6-6
Format, 6-5
Path, 6-5
template, 6-5

command history, 2-6
command line buffer, 2-7
searching for commands, 2-7

command line, 2-5
adding comments, 5-4
argument passing, 3-21
concepts, 3-7
editing, 2-5
sample, 3-13
separating arguments, 3-19

command line characters, 3-14
asterisk (*), 3-19
colon (:), 3-14
double quotation mark ("), 3-15
plus sign (+), 3-16
question mark (?), 3-16
slash (/), 3-15

command name, 3-12
commands, 3-8, 6-1, 7-4

ADDBUFFERS, 6-10
ADDDATATYPES, 6-92
ALIAS, 6-11
ASK, 6-12
ASSIGN, 6-13
AUTOPOINT, 7-13
AVAIL, 6-17
BINDDRIVERS, 6-92
BLANKER, 7-14
BREAK, 6-18
CALCULATOR, 7-18
CD, 6-19
CHANGETASKPRI, 6-21
CLICKTOFRONT, 7-15
CLOCK, 7-19
CMD, 7-20
CONCLIP, 6-93

COPY, 6-22
CPU, 6-24
CROSSDOS, 7-15
DATE, 6-26
DELETE, 6-28
description, 3-8
DIR, 6-29
DISKCHANGE, 6-32
DISKCOPY, 7-21
ECHO, 6-32, D-8
ED, 6-33
EDIT, 6-34
ELSE, 6-34
ENDCLI, 6-35
ENDIF, 6-35
ENDSHELL, 2-3, 6-36
ENDSKIP, 6-36
EVAL, 6-37
EXCHANGE, 7-16
EXECUTE, 6-38
FAILAT, 5-13, 6-39
FAULT, 6-40
FILENOTE, 6-41
FIXFONTS, 7-22
FKEY, 7-16
FONT, 7-5
FORMAT, 7-23
GET, 6-42
GETENV, 6-43
GRAPHICDUMP, 7-25
ICONEDIT, 7-26
ICONTROL, 7-5
ICONX, 6-43
IF, 6-45
INFO, 6-46
INITPRINTER, 7-26
INPUT, 7-6
INSTALL, 6-47
INTELLIFONT, 7-26
IPREFS, 6-93
JOIN, 6-48
KEYSHOW, 7-27
LAB, 6-49
LIST, 6-49

Index-5

LOADRESOURCE, 6-52
LOADWB, 6-53
LOCALE, 7-6
LOCK, 6-54
MAGTAPE, 6-55
MAKEDIR, 6-56
MAKELINK, 6-57
MEmacs, 7-27
MORE, 7-27
MOUNT, 6-57
MOUSEBLANKER, 7-17
MULTIVIEW, 7-29
nesting, 5-10
NEWCLI, 6-59
NEWSHELL, 6-59
NOCAPSLOCK, 7-17
NOFASTMEM, 7-32
order of commands in script, D-
8
OVERSCAN, 7-7
PALETTE, 7-7
PATH, 6-62
POINTER, 7-8
PREPCARD, 7-32
PRINTER, 7-8
PRINTERGFX, 7-9
PRINTERPS, 7-9
PROMPT, 6-64
PROTECT, 6-65
QUIT, 6-66
RELABEL, 6-67
REMRAD, 6-68
RENAME, 6-68
repeating, 5-12
REQUESTCHOICE, 6-69
REQUESTFILE, 6-70
RESIDENT, 6-72
RUN, 6-74
SCREENMODE, 7-10
SEARCH, 6-76
SERIAL, 7-10
SET, 6-77
SETCLOCK, 6-78, D-8
SETDATE, 6-79

SETENV, 6-79
SETFONT, 6-80
SETKEYBOARD, 6-81
SETPATCH, 6-94
SKIP, 6-82
SORT, 6-84
SOUND, 7-11
STACK, 6-85
STATUS, 6-85
TIME, 7-11
TYPE, 6-86
UNALIAS, 6-87
UNSET, 6-87
UNSETENV, 6-88
VERSION, 6-88
WAIT, 6-89
WBPATTERN, 7-12
WHICH, 6-90
WHY, 6-91

comments, 5-4, 6-41
adding comments to command
line, 5-4
adding with FILENOTE, 6-41

Commodities programs, 7-12
arguments, 7-12
AUTOPOINT, 7-13
BLANKER, 7-14
CLICKTOFRONT, 7-15
CrossDOS, 7-15
EXCHANGE, 7-16
FKEY, 7-16
MOUSEBLANKER, 7-17
NOCAPSLOCK, 7-17

commodities.library, B-14
CON:, 3-4
CONCLIP, 6-93
condition flags, 5-13
conditional statements, 6-34, 6-45

ELSE, 6-34
console handler, B-10
console window, 2-1,3-4

current, 3-4
CONSOLE:, 3-4, 3-19
COPY, 3-11, 6-22

Index-6

defaults, 6-23
copyback cache., 6-25
copying within a Shell, 2-7
CPU, 6-24

processor options list, 6-25
CrossDOS, 7-15

CrossDOSFileSystem, B-11
DANSK.crossdos, B-12
FileSystem_Trans, B-12
INTL.crossdos, B-12
MAC.crossdos, B-12

CrossDOSFileSystem, B-11
Ctrl+C, 8-2
Ctrl+D, 8-3
current directory, 3-10

changing, 3-10, 8-3
changing with PCD, B-9
displaying, 6-19
properties, 3-10
referencing with quotation
marks, 3-15

cursor, 2-3
customizing ED, 4-21
customizing startup files, D-6
customizing system startup, D-6

D
data cache, 6-25
data types, 6-92
datatypes.library, B-14
DATE, 3-11,6-7, 6-26, 6-78
debugging script files, 5-14
default search path, 3-9
DELETE, 3-11,6-28
devices, 3-3

clipboard.device, B-3
creating mount files, B-5
creating MountLists, B-5
description, 3-2
device handlers, B-10
device name, 3-3

floppy disks, 3-3
getting information, 6-46
hard disks, 3-3
loading device drivers, 6-92
logical, 3-4
mfm.device, B-3
mounting, 6-57, B-4

with mount files, B-4
with MountList, B-4

parallel.device, B-3
printer.device, B-3
Ram Disk, 3-3
RAM:, C-5
removing RAD:, 6-68
running device drivers, 6-92
serial device, B-3
setting write protection, 6-54
standard names, 3-4

CON:, 3-4
CONSOLE:, 3-4
DFO:, 3-4
NIL:, 3-4
PAR:, 3-4
PRT:, 3-4
RAD:, 3-4
RAM:, 3-4
SER:, 3-4
SYS:, 3-4

version number, 6-88
DEVS:, B-3

device files, B-3
other files, B-4
postscript_init.ps, B-4
system configuration, B-4

DFO:, 3-4
DIR, 3-11,6-12, 6-29, 8-18

interactive mode, 8-18
options, 6-30

directories, 3-5, B-1
C:, B-17
CD, 6-19
Classes, B-17
CLIPS:, B-16
COPY, 6-22

Index-7

copying, 6-22, 8-7
creating, 6-56
current directory, 3-10
deleting, 6-28
description, 3-2
DEVS:, B-3
displaying contents, 8-4
displaying sorted list, 6-29
ENV:, B-16
ENVARC:, B-16
FONTS:, B-12
L:, B-10
LIBS:, B-13
listing information, 6-49
LOCALE:, B-15
moving, 6-68
naming conventions, 3-6
nesting, 3-5
renaming, 6-68
REXX:, B-15
root directory, 3-5
S:, B-8
search path, 3-9
subdirectories, 3-5
T:, B-16

directory caching, 7-23
DISKCHANGE, 6-32
DISKCOPY, 3-11, 7-21
diskfont.library, B-14
display system date, 6-26
displaying cache buffers, 6-10
dollar sign, 5-4
dot commands, 5-6

.<space>, 5-7

.BRA, 5-7

.DEF, 5-7

.DOLLAR, 5-7

.DOT, 5-7

.KET, 5-7

.KEY, 5-7
list, 5-10
substituting parameters, 5-8

double dollar sign, 5-5

E
ECHO, 5-6, 5-14, 6-32, D-8

debugging with SET ECHO ON,
5-14

ED text editor, 4-1,6-33
accessing expanded menus, 8-
10
ARexx support, 4-24
changing case, 4-7

Ctrl-F, 4-7
Command menu, 4-18
cursor control, 4-13
customizing, 4-21

special key mappings, 4-16
deleting text, 4-6

Backspace, 4-6
Ctrl-O, 4-6
Ctrl-Y, 4-6
Del, 4-6

Edit menu, 4-12
extended commands, 4-7

cursor control, 4-13
editing commands, 4-12
environment setting
commands, 4-15
file manipulation commands,
4-18
program control commands,
4-11
searching and exchanging,
4-13

extended mode
entering, 4-7

format, 4-2
grouping commands together,
4-7
immediate commands, 4-4

changing case, 4-7
deleting text, 4-6
inserting text, 4-6

Index-8

moving the cursor, 4-4
specifying, 4-4

inserting lines, 4-6
inserting text, 4-6
invoking a requester, 4-8
maximum characters on a line,
4-6
menus

enabling expanded menu, 4-
9

miscellaneous commands, 4-18
Movement menu, 4-13
moving the cursor, 4-4
printing from, 4-23
Project menu, 4-11
quitting, 4-24
repeating extended commands,
4-20
scrolling through file, 4-5
Search menu, 4-13
Settings menu, 4-15
starting, 4-3
status line, 4-2
using delimiters, 4-8
using ED, 4-4

immediate commands, 4-4
ED text editors

menus, 4-8
ED-Startup File, B-8
EDIT, 6-34
EDIT text editor, 4-43

commands, 4-45
changing command, 4-53
changing input files, 4-53
changing output files, 4-53
editing current line, 4-47
editing line windows, 4-48
ending EDIT, 4-56
entering, 4-45
inserting and deleting lines,
4-47
inspecting the source file, 4-
51
joining lines, 4-50

making global changes, 4-52
moving through file, 4-46
renumbering lines, 4-50
selecting the Current Line,
4-46
splitting lines, 4-50
verifying lines, 4-51

Starting, 4-44
ELSE, 5-6, 6-34
ENDCLI, 6-35
ENDIF, 5-6, 6-35
ENDSHELL, 2-3, 3-11,6-36
ENDSKIP, 5-6, 6-36
ENV;, B-16
ENVARC:, B-16
environment variables, 5-14

calling from scripts, 6-80
creating, 6-77
creating global, 6-80
creating with SET, 5-16
creating with SETENV, 5-16
ECHO, 5-15
getting the value of global
variables, 6-43
getting the value of local
variables, 6-42
global, 5-16
in calculations, 5-15
local, 5-16
PROCESS, 5-15
RC, 5-15
RESULT2, 5-15
using, 5-14

error messages, 6-40, A-1
WHY command, 6-91

escape sequences, D-3
standard (table), D-4
with asterisk, D-6

EVAL, 5-15, 6-37
creating loops, 8-23
LFORMAT option, 6-37
operations table, 6-37

EXCHANGE, 7-16
EXECUTE, 5-6, 6-38

Index-9

starting ED, 4-3
executing commands from within a
string, 5-4
external cache, 6-26

F
fail limit, 6-39
FAILAT, 5-6, 5-13, 6-39
Fast File System, 7-23
Fast memory, 6-17
FASTROM, 6-25
FAULT, 6-40
file management, 3-2
FILENOTE, 6-41

creating a comment, 6-41
files, 3-5, 3-8

.info files, 3-5
COPY, 6-22
copying, 8-7
creating links, 6-57
deleting, 6-28
deleting files with icons, 8-16
deleting from Workbench disk,
C-3
description, 3-2
displaying text files, 6-86
joining, 6-48
listing information, 6-49
MEmacs file size, 4-27
moving, 6-68, 8-17
naming conventions, 3-6
protection bits, 6-65
renaming, 6-68
sorting lines alphabetically, 6-84

FileSystem_Trans, B-12
FixFonts, 7-22, B-12
FKEY, 7-16
floppy disk systems, C-1

advantages, C-6
ASSIGNing PATH, 6-15

deleting files from Workbench
disk, C-3

files not to delete, C-4
files you can delete, C-4

making commands resident, C-
1
preloading resources, 6-52, C-2
using Ram Disk, C-5
using RESIDENT, 6-72

floppy disks, 3-3
FONT, 7-5
fonts, B-12

adding fonts, B-12
bitmap fonts, B-12
changing in current Shell, 6-80
flushing unused, 8-22
INTELLIFONT, 7-26
outline fonts, B-13
SETFONT options, 6-81
specifying, 7-5
updating .fonts files, 7-22
using FixFonts, B-12

FORMAT, 3-11,7-23
options, 7-23

formatting disks, 7-23
freeing memory, 6-18, 8-22

G
GET, 5-16, 6-42
GETENV, 5-16, 6-43
global variables, 5-16

getting value, 6-43
removing, 6-88
setting, 6-79

GRAPHICDUMP, 7-25

Index-10

H J
hard disks, 3-3 JOIN, 6-48, 8-22
hardware clock, 6-78

reading, 6-78
setting, 6-78

K

I
ICONEDIT, 7-26
icons, 8-11

.info files, 3-6
copying, 3-6

attaching to file or directory, 8-
11

ICONTROL, 7-5
ICONX, 6-43, 8-20

using, 8-20
IF, 5-6, 6-45

keywords, 6-45
IF block, 6-34

ELSE, 6-34
ENDIF, 6-35

iff parse, library, B-14
implied CD, 6-20
INFO, 3-11,6-46
information storage, 3-1
INITPRINTER, 7-26
INPUT, 7-6
INSTALL, 6-47
instruction cache, 6-25
integer expressions

evaluating, 6-37
INTELLIFONT, 7-26
international file system, 7-23
IPREFS, 6-93

key combinations, 2-5
keymaps, 6-81

available, 6-81
setting, 6-81

KEYSHOW, 7-27
keywords, 3-7, 3-13

.KEY, 5-7
dot commands, 5-6
IF command, 6-45
optional, 3-13

L
L:, B-10
LAB, 5-6, 6-49
late binding assign, 6-14
LFORMAT, 5-3, 6-37, 6-50

generating scripts, 8-19
LIBS:, B-13
links, 6-57

directory links, 6-57
hard links, 6-57

LIST, 3-12, 5-3, 6-49, 8-19
generating scripts with
LFORMAT, 5-3
LFORMAT

customizing output, 8-20
description, 6-50
generating scripts, 8-19

Index-11

options, 6-49
LOADRESOURCE, 6-52, C-2
LOADWB, 6-53
local variables, 5-16

getting value, 6-42
removing, 6-87
setting, 6-77

LOCALE command, 7-6
locale.library, B-14
LOCALE:, B-15

directories, B-15
Catalogs, B-15
Countries, B-15
Help, B-15
Languages, B-15

LOCK, 6-54
logical devices, 3-4

controlling assignment, 6-13
lowlevel.library, B-14

M
MAGTAPE, 6-55
MAKEDIR, 3-12, 6-56
MAKELINK, 6-57
making commands resident, C-1
making room on Workbench disk,
C-3
math functions, B-13
mathieeedoubbas.library, B-14
mathieeedoubtrans.library, B-14
mathieeesingtrans.library, B-14
mathtrans.library, B-14
MEmacs text editor, 4-27, 7-27

command mode, 4-28
customizing, 4-42
file size, 4-27
menu commands, 4-30

Edit, 4-33
Extras, 4-39
Line, 4-36
Move, 4-35

Project, 4-31
Search, 4-38
Set-Mark, 4-29
Window, 4-35
Word, 4-37

non-menu commands, 4-41
normal mode, 4-28
quitting, 4-43
special terms, 4-29

Buffer, 4-29
Dot, 4-29
Kill, 4-29
Mark, 4-29
Modified Buffers, 4-30
Window, 4-29

starting, 4-27
using, 4-28

memory availability, 6-17
freeing memory, 6-18

MMU, 6-25
MORE, 5-16, 7-27
MOUNT, 6-57, B-4
mount files, 6-57, B-4

creating, B-5
default values, B-5
device handlers, B-10
for PIPE:, D-10

MountList, 6-57, B-4
creating, B-5
default values, B-5
device handlers, B-10

MOUSEBLANKER, 7-17
moving files, 8-17
MS-DOS formatted disks, 7-15

reading and writing, 7-15
MultiView, 7-29

options, 7-29
supported ARexx commands, 7-
30

Index-12

N
naming files and directories, 3-6

allowable characters, 3-6
case-sensitivity, 3-6
name length, 3-6
reserved characters, 3-6
using spaces, 3-6

nested directories, 3-5
nesting commands, 5-10
NEWCLI, 6-59
NEWSHELL, 3-12, 6-59, 8-2

window options, 6-60
NIL:, 3-4
NOCAPSLOCK, 7-17
NOFASTMEM, 7-32
non-binding assign, 6-15

O
Old File System, 7-23
opening a Shell window from
Workbench, 8-1
outline fonts, B-13

INTELLIFONT, 7-26
OVERSCAN, 7-7

P
PALETTE, 7-7
PAR:, 3-4
parallel port, 3-4
parameter substitution, 5-6, 6-39
partitions

description, 3-2
getting information about, 6-46

setting write protection, 6-54
pasting within a Shell, 2-7
PATH, 6-62
paths

changing search path, 8-4
description, 3-2
search path, 3-9

relative path, 8-2
searching for specific items, 6
90
specifying, 3-14

pattern matching, 3-16, 8-8
DPat, B-9
examples, 3-17
SPat, B-9
used with CD, 6-20
using scripts for multiple, 5-3

PCD, B-9
PCMCIA memory cards, 7-32

preparing, 7-32
Pipe-Handler, 7-28
PIPE:, 8-25, B-11

buffer size, D-9
description, D-9
mount file, D-10
naming, D-9
options, D-9
source and destination
processes, D-9
using, 8-25, D-9

POINTER, 7-8
Port-Handler, B-11

setting baud rate, B-11
PostScript printers, 7-9

controlling features, 7-9
postscript_init.ps, B-4
Preferences editors, 7-4

arguments, 7-4
FONT, 7-5
ICONTROL, 7-5
INPUT, 7-6
IPREFS, 6-93
LOCALE, 7-6
OVERSCAN, 7-7

Index-13

PALETTE, 7-7
POINTER, 7-8
PRINTER, 7-8
PRINTERGFX, 7-9
PRINTERPS, 7-9
SCREENMODE, 7-10
SERIAL, 7-10
SOUND, 7-11
TIME, 7-11
WBPATTERN, 7-12

preloading resources, C-2
using LOADRESOURCE, C-2

PREPCARD, 7-32
options, 7-32

PRINTER, 7-8
printer, 3-4
PRINTERGFX, 7-9
PRINTERPS, 7-9
process numbers, 3-21

displaying, 6-18
referencing current Shell, 5-5
setting attention flags, 6-18
substituting current, 5-5

processes
changing priority, 6-21
end Shell, 6-35, 6-36
executing in background, 6-74
listing information about, 6-85
stopping, 6-19

processor options, 6-24
data cache, 6-25
instruction cache, 6-25
list, 6-25

programs
commands, 3-8
description, 3-8
names, 3-12
running from within the Shell, 3-
20
scripts, 3-8
stopping, 8-2

Ctrl+C, 8-2
storage, 3-8

PROMPT, 6-64

PROTECT, 6-65
protection bits, 6-65

displaying, 6-65
list, 6-65

PRT:, 3-4
public screens, 8-14

internal names, D-2
opening a Shell window on, 8-
14
PUBSCREEN, D-1

pure commands, 6-72

Q
Queue-Handler, B-11
QUIT, 5-6, 6-66

R
RAD:, 3-4, C-6
Ram Disk, 3-3, 3-4, C-5

custom icon, 8-15
recoverable, C-6
size, C-5

RAM:, 3-4
RAM:Clipboards, B-16
re-entrant commands, 6-72
re-executable commands, 6-72
realtime.library, B-14
recoverable RAM disk, 6-68

removing, 6-68
redirection, 3-18

angle brackets, 3-18
asterisk, 3-20
double right angle brackets, 3-
19
redirecting input, 3-18

left angle bracket, 3-19
redirecting output, 3-18

Index-14

right angle bracket, 3-18
redirecting printer output, 7-20
using question mark character,
5-5

RELABEL, 3-12, 6-67
relative path, 8-2
REMRAD, 6-68
RENAME, 3-12, 6-68
repeating commands, 2-6, 5-12
REQUESTCHOICE, 5-6, 6-69
REQUESTFILE, 5-6, 6-70
RESIDENT, 6-72
resident commands, C-1

list of commands that cannot be
made resident, 6-72

return codes, 5-13, 6-39
revision numbers, 6-88
REXX:, B-15
rexxsupport.library, B-14
rexxsyslib.library, B-14
ROM patches, 6-94
root directory, 3-2
RUN, 3-21,6-74
running programs, 3-20

S
S:, B-8
SCREENMODE, 7-10
scripting characters, 5-3

back apostrophe ('), 5-4
dollar sign, 5-4
double dollar sign, 5-5
question mark, 5-5
semicolon (;), 5-4

scripts, 3-8, 5-1
.BRA, 5-8
.KET, 5-8
Adding Comments, D-8
ARexx programs, 3-9
ASK command, 6-12

calling environment variables, 6-
80
commands, 5-5

ASK, 5-6
ECHO, 5-6
ELSE, 5-6
ENDIF, 5-6
ENDSKIP, 5-6
EXECUTE, 5-6
FAILAT, 5-6
IF, 5-6
LAB, 5-6
QUIT, 5-6
REQUESTCHOICE, 5-6
REQUESTFILE, 5-6
SKIP, 5-6
WAIT, 5-6

conditional statements, 6-45
creating, 5-1
creating Move command, 8-17
creating requesters for, 5-11
debugging, 5-14

using SET ECHO ON, 5-14
description, 3-8
displaying requesters, 6-69
dot commands, 5-6

list, 5-10
DPat, B-9
ending, 5-12
entering comments, 5-10
environment variables

creating with SET, 5-16
creating with SETENV, 5-16
global, 5-16
local, 5-16
using GET, 5-16
using GETENV, 5-16
using UNSET, 5-16
using UNSETENV, 5-16

error messages, 5-14
executing through icon, 6-43
executing with argument
substitution, 6-38
exiting, 6-66

Index-15

generating automatically, 5-3
LFORMAT, 5-3

halting, 5-11
interactive, 5-11
order of commands within, D-8
parameter substitution, 5-6, 6-
39

.DEF, 5-9

.DOLLAR, 5-10
specifying default strings, 5-
9

passing variables to, 6-39
PCD, B-9
preventing output, 8-21
repeating command, 5-12
skip to label, 6-82
SPat, B-9
specifying labels, 6-49
stopping, 5-13, 8-2

Ctrl+D, 8-3
types, 5-2

AmigaDOS, 5-2
ARexx, 5-2
simple, 5-3

understanding, 5-1
User-startup file, 8-8
using environment variables, 5-
14
using EXECUTE command, 5-2
using file requester, 6-70
using MORE, 5-16
writing interactive scripts, 6-12

SCSI tapes, 6-55
SEARCH, 6-76

options, 6-76
search path, 3-9

adding directory names, 6-63
C:, B-17
changing, 6-62, 8-4
default, 3-9
displaying directory names in
current, 6-62
extending, 3-23
PATH command, 6-62

PCD, B-9
removing a directory name, 6-
63
replacing, 6-63
running programs, 8-2
running programs not on, 8-2
WHICH, 6-90

selecting a display mode, 7-10
SER:, 3-4

setting baud rate, B-11
SERIAL, 7-10
serial port, 3-4
SET, 5-16, 6-77
set system date, 6-26
SETCLOCK, 3-12, 6-78, D-8
SETDATE, 6-79
SETENV, 5-16, 6-79
SETFONT, 6-80

options, 6-81
SETKEYBOARD, 6-81

available keymaps list, 6-81
SETPATCH, 6-94
setting the system clock, 7-11
Shell, 2-1

copying within, 2-7
customizing environment, D-2
description, 2-1
editing within the Shell, 2-5
helpful hints, 2-9
listing output, 2-6
maximum command line

length, 3-13
pasting within, 2-7
running programs, 3-20, 8-2
starting ED, 4-3
using, 2-3

Shell prompt, 2-3
changing, D-3
changing the prompt string, 6-
64
customizing, 3-22
default prompt string, 6-64
modifying, 8-14
substitution strings, 6-64

Index-16

Shell window, 2-1
asterisk, 3-20
closing, 2-3
CONSOLE:, 3-20
controlling with WINDOW, 8-13
current window, 2-3
customizing, 6-59, D-1
description, 2-1
ENDSHELL, 6-36
enlarging, 2-4
fonts, 2-1
multiple windows, 2-2
opening, 2-2, 6-59
opening additional Shells, 8-2
opening from Workbench, 8-1
opening with NEWSHELL, 2-2,
6-59
options, 6-60
using icons with, 2-1
using mouse with, 2-1, 2-8
working with a single Shell, 8-10

Shell-startup file, 6-61, D-2
changing the prompt, D-3
creating global alias, 6-11
escape sequences, using, D-3
using aliases, D-2

SKIP, 5-6, 6-82
SKIP block, 6-36

terminating, 6-36
SORT, 6-84, 8-22
SOUND, 7-11
SPat, B-9
special AmigaDOS characters, 3-14
specifying fonts, 7-5
specifying paths, 3-14
specifying printer/print options, 7-8
specifying Workbench parameters,
7-5
STACK, 6-85
stack size

displaying, 6-85
range, 6-85
setting, 6-85

starting Workbench, 6-53

Startup-sequence script file, D-6
STATUS, 6-85
strings, 6-32

displaying, 6-32
echoing a substring, 6-32
searching, 6-76

subdirectories, 3-5
description, 3-2

substitution operators, 6-51
SYS:, 3-4
system commands, 6-92

ADDDATATYPES, 6-92
BINDDRIVERS, 6-92
CONCLIP, 6-93
IPREFS, 6-93
SETPATCH, 6-94

system-configuration, B-4

T
T:, B-16
template, 6-5

description, 6-8
displaying, 6-8
notation, 6-8

testing commands, 8-16
text editing keys, 2-5
text editors, 4-1

ED, 4-1
EDIT, 4-43
MEmacs, 4-27

TIME, 7-11
timestamp

changing, 6-79
TRAP, 6-25
TYPE, 3-12, 6-86
types of commands, 3-11

Index-17

u
UNALIAS, 6-87
UNSET, 5-16, 6-87
UNSETENV, 5-16, 6-88
User-startup file, 8-8, D-6

common additions, D-8
creating, 8-8
customizing system startup, D-6
editing, D-8
using PATH option, C-3

V
VERSION, 6-88
version.library, B-14
versions

testing, 8-22
volumes

description, 3-2
SYS:, 3-4
volume name, 3-3

W
WAIT, 5-6, 6-89
WBPATTERN, 7-12
WHICH, 6-90
WHY, 6-91
wildcard characters, 3-16

list, 3-16
using for multiple deletes, 6-28

Workbench-related commands, 7-1
AUTOPOINT, 7-13
BLANKER, 7-14
CALCULATOR, 7-18

CLICKTOFRONT, 7-15
CLOCK, 7-19
CMD, 7-20
Commodities programs, 7-12
CROSSDOS, 7-15
DISKCOPY, 7-21
EXCHANGE, 7-16
FIXFONTS, 7-22
FKEY, 7-16
FONT, 7-5
FORMAT, 7-23
GRAPHICDUMP, 7-25
ICONEDIT, 7-26
ICONTROL, 7-5
INITPRINTER, 7-26
INPUT, 7-6
INTELLIFONT, 7-26
KEYSHOW, 7-27
LOCALE, 7-6
MEmacs, 7-27
MORE, 7-27
MOUSEBLANKER, 7-17
MULTIVIEW, 7-29
NOCAPSLOCK, 7-17
NOFASTMEM, 7-32
OVERSCAN, 7-7
PALETTE, 7-7
POINTER, 7-8
Preferences editors, 7-4
PREPCARD, 7-32
PRINTER, 7-8
PRINTERGFX, 7-9
PRINTERPS, 7-9
SCREENMODE, 7-10
SERIAL, 7-10
SOUND, 7-11
TIME, 7-11
WBPATTERN, 7-12

write protecting devices and
partitions, 6-54

Notice

Notice

Notice

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

